用户工具

站点工具


费里德曼双向方差分析

这是本文档旧的修订版!


费里德曼双向方差分析 Freedman's two-way ANOVA

1.使用背景 Context of Use

费里德曼双向方差分析用于分析多个顺序型相关样本(Multiple sequential correlation samples)

2.检测统计量


其中,n为各样本的样本容量,k为样本个数,R为各个样本的秩次和。

3.假设检验

第一步:给出虚无假设和备择假设

  • H0:无显著差异
  • H1:有显著差异

第二步:将每个样本在不同条件下得到的结果进行排序

第三步:求出每种条件下各个样本的秩次和

第四步:代入检测统计量公式求出统计量观测值,根据题目比较观测值与临界值

  • 只有当✘2r的观测值大于临界值时才能拒绝虚无假设H0

4.大样本情况下的费里德曼双向方差分析 The case of Large Samples

与克-瓦氏单向方差分析一样,当样本数和样本容量较大时费里德曼双向方差分析的✘2r的取样分布近似于自由度为k-1的✘2分布。

  1. As with the Kerr-Watt one-way ANOVA, the sampling distribution of the chi-square of the Freedman two-way ANOVA approximates the chi-square distribution with k-1 degrees of freedom when the number of samples and the sample size are large.
费里德曼双向方差分析.1713507008.txt.gz · 最后更改: 2024/04/19 06:10 由 hant_g._cavendish