费里德曼双向方差分析
目录
费里德曼双向方差分析 Freedman's two-way ANOVA
1.使用背景 Context of Use
费里德曼双向方差分析用于分析多个顺序型相关样本(Multiple sequential correlation samples)。
2.检测统计量 Test Statistic
其中,n为各样本的样本容量,k为样本个数,R为各个样本的秩次和。
n is the sample size of each sample, k is the number of samples, R is the rank sum of each sample.
3.假设检验 Hypothesis Test
Step 1: 给出虚无假设和备择假设 Give null hypotheses and alternative hypotheses
- H0:无显著差异 No significant difference
- H1:有显著差异 Significant difference
Step 2: 将每个样本在不同条件下得到的结果进行排序 Sort the results obtained for each sample under different conditions
Step 3: 求出每种条件下各个样本的秩次和 Find the rank sum of each sample in each condition
Step 4: 代入检测统计量公式求出统计量观测值,根据题目比较观测值与临界值 Substitute the formula for the test statistic to find the observed value of the statistic, and compare the observed value with the critical value according to the topic
- 只有当✘2r的观测值大于临界值时才能拒绝虚无假设H0。
- The null hypothesis H0 can be rejected only if the observed value of ✘2r is greater than the critical value.
4.大样本情况下的费里德曼双向方差分析 The case of Large Samples
与克-瓦氏单向方差分析一样,当样本数和样本容量较大时费里德曼双向方差分析的✘2r的取样分布近似于自由度为k-1的✘2分布。
- As with the Kerr-Watt one-way ANOVA, the sampling distribution of the Freedman two-way ANOVA approximates the chi-square distribution with k-1 degrees of freedom when the number of samples and the sample size are large.
费里德曼双向方差分析.txt · 最后更改: 2024/04/19 10:17 由 hant_g._cavendish