费里德曼双向方差分析
差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
费里德曼双向方差分析 [2024/04/19 10:15] – [3.假设检验 Hypothesis Test] hant_g._cavendish | 费里德曼双向方差分析 [2024/04/19 10:17] (当前版本) – [3.假设检验 Hypothesis Test] hant_g._cavendish | ||
---|---|---|---|
行 19: | 行 19: | ||
**Step 4: 代入检测统计量公式求出统计量观测值,根据题目比较观测值与临界值 Substitute the formula for the test statistic to find the observed value of the statistic, and compare the observed value with the critical value according to the topic** | **Step 4: 代入检测统计量公式求出统计量观测值,根据题目比较观测值与临界值 Substitute the formula for the test statistic to find the observed value of the statistic, and compare the observed value with the critical value according to the topic** | ||
* 只有当✘< | * 只有当✘< | ||
+ | * The null hypothesis H0 can be rejected only if the observed value of ✘2r is greater than the critical value. | ||
===== 4.大样本情况下的费里德曼双向方差分析 The case of Large Samples ===== | ===== 4.大样本情况下的费里德曼双向方差分析 The case of Large Samples ===== | ||
与克-瓦氏单向方差分析一样,当样本数和样本容量较大时费里德曼双向方差分析的✘< | 与克-瓦氏单向方差分析一样,当样本数和样本容量较大时费里德曼双向方差分析的✘< | ||
* As with the Kerr-Watt one-way ANOVA, the sampling distribution of the Freedman two-way ANOVA approximates the chi-square distribution with k-1 degrees of freedom when the number of samples and the sample size are large. | * As with the Kerr-Watt one-way ANOVA, the sampling distribution of the Freedman two-way ANOVA approximates the chi-square distribution with k-1 degrees of freedom when the number of samples and the sample size are large. |
费里德曼双向方差分析.1713521754.txt.gz · 最后更改: 2024/04/19 10:15 由 hant_g._cavendish