费里德曼双向方差分析
差别
这里会显示出您选择的修订版和当前版本之间的差别。
| 两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
| 费里德曼双向方差分析 [2024/04/19 10:14] – [3.假设检验] hant_g._cavendish | 费里德曼双向方差分析 [2024/04/19 10:17] (当前版本) – [3.假设检验 Hypothesis Test] hant_g._cavendish | ||
|---|---|---|---|
| 行 9: | 行 9: | ||
| ===== 3.假设检验 Hypothesis Test ===== | ===== 3.假设检验 Hypothesis Test ===== | ||
| - | **第一步:给出虚无假设和备择假设 | + | **Step 1: 给出虚无假设和备择假设 Give null hypotheses and alternative hypotheses** |
| * **H0**:无显著差异 No significant difference | * **H0**:无显著差异 No significant difference | ||
| * **H1**:有显著差异 Significant difference | * **H1**:有显著差异 Significant difference | ||
| - | **第二步:将每个样本在不同条件下得到的结果进行排序 | + | **Step 2: 将每个样本在不同条件下得到的结果进行排序 Sort the results obtained for each sample under different conditions** |
| - | **第三步:求出每种条件下各个样本的秩次和** | + | **Step 3: 求出每种条件下各个样本的秩次和 |
| - | **第四步:代入检测统计量公式求出统计量观测值,根据题目比较观测值与临界值** | + | **Step 4: 代入检测统计量公式求出统计量观测值,根据题目比较观测值与临界值 |
| * 只有当✘< | * 只有当✘< | ||
| + | * The null hypothesis H0 can be rejected only if the observed value of ✘2r is greater than the critical value. | ||
| ===== 4.大样本情况下的费里德曼双向方差分析 The case of Large Samples ===== | ===== 4.大样本情况下的费里德曼双向方差分析 The case of Large Samples ===== | ||
| 与克-瓦氏单向方差分析一样,当样本数和样本容量较大时费里德曼双向方差分析的✘< | 与克-瓦氏单向方差分析一样,当样本数和样本容量较大时费里德曼双向方差分析的✘< | ||
| * As with the Kerr-Watt one-way ANOVA, the sampling distribution of the Freedman two-way ANOVA approximates the chi-square distribution with k-1 degrees of freedom when the number of samples and the sample size are large. | * As with the Kerr-Watt one-way ANOVA, the sampling distribution of the Freedman two-way ANOVA approximates the chi-square distribution with k-1 degrees of freedom when the number of samples and the sample size are large. | ||
费里德曼双向方差分析.1713521670.txt.gz · 最后更改: 2024/04/19 10:14 由 hant_g._cavendish