费里德曼双向方差分析
差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
费里德曼双向方差分析 [2024/04/19 06:23] – [2.检测统计量 Test Statistic] hant_g._cavendish | 费里德曼双向方差分析 [2024/04/19 10:17] (当前版本) – [3.假设检验 Hypothesis Test] hant_g._cavendish | ||
---|---|---|---|
行 6: | 行 6: | ||
{{ :: | {{ :: | ||
其中,n为各样本的样本容量,k为样本个数,R为各个样本的秩次和。\\ | 其中,n为各样本的样本容量,k为样本个数,R为各个样本的秩次和。\\ | ||
- | n is the sample size of each sample, k is the number of samples, R is the rank sum of each sample | + | n is the sample size of each sample, k is the number of samples, R is the rank sum of each sample. |
- | ===== 3.假设检验===== | + | ===== 3.假设检验 |
- | **第一步:给出虚无假设和备择假设** | + | **Step 1: 给出虚无假设和备择假设 |
- | * **H0**:无显著差异 | + | * **H0**:无显著差异 |
- | * **H1**:有显著差异 | + | * **H1**:有显著差异 |
- | **第二步:将每个样本在不同条件下得到的结果进行排序** | + | **Step 2: 将每个样本在不同条件下得到的结果进行排序 |
- | **第三步:求出每种条件下各个样本的秩次和** | + | **Step 3: 求出每种条件下各个样本的秩次和 |
- | **第四步:代入检测统计量公式求出统计量观测值,根据题目比较观测值与临界值** | + | **Step 4: 代入检测统计量公式求出统计量观测值,根据题目比较观测值与临界值 |
* 只有当✘< | * 只有当✘< | ||
+ | * The null hypothesis H0 can be rejected only if the observed value of ✘2r is greater than the critical value. | ||
===== 4.大样本情况下的费里德曼双向方差分析 The case of Large Samples ===== | ===== 4.大样本情况下的费里德曼双向方差分析 The case of Large Samples ===== | ||
与克-瓦氏单向方差分析一样,当样本数和样本容量较大时费里德曼双向方差分析的✘< | 与克-瓦氏单向方差分析一样,当样本数和样本容量较大时费里德曼双向方差分析的✘< | ||
* As with the Kerr-Watt one-way ANOVA, the sampling distribution of the Freedman two-way ANOVA approximates the chi-square distribution with k-1 degrees of freedom when the number of samples and the sample size are large. | * As with the Kerr-Watt one-way ANOVA, the sampling distribution of the Freedman two-way ANOVA approximates the chi-square distribution with k-1 degrees of freedom when the number of samples and the sample size are large. |
费里德曼双向方差分析.1713507791.txt.gz · 最后更改: 2024/04/19 06:23 由 hant_g._cavendish