这是本文档旧的修订版!
独立样本均值差异的分布
Distribution of mean differences for independent samples
在独立样本设计中,每一个总体都有一个均值分布,这样对两个总体来说,我们就要处理两个不同的均值分布。我们从第一个总体的均值分布中随机选择一个均值,再从第二个总体的均值分布中随机选择一个均值。将抽取的两个均值相减,得到一个均值差异的分数,多次重复这一过程,我们就可以得到一个均值差异的分布。
如果虚无假设是正确的,那么两个总体的均值时相等的,所以我们得到的均值差异的分布的均值是0。这一分布的方差总体取决于估计的总体方差,因此我们可以把它看作一个t分布来进行检验。我们先利用样本方差来估计总体方差,从而估计总体样本分布的方差,然后再结合两个样本均值分布的方差构造一个新的估计值,用于描述样本均值分布的变异。
In an independent sample design, each population has a mean distribution. In this way for two population we have to deal with two different mean distributions. We randomly select a mean from the mean distribution of the first population, and then we randomly select a mean from the mean distribution of the second population as well. Subtracting the two extracted means gives us a fraction of the difference in means, and repeating this process many times we obtain a distribution of differences in means.