====重复测量方差分析的方差分解==== * SS总和 = SS组间 +__ SS组内__ = SS组间 +__ SS被试间 + SS误差__ * {{:repeated.png?400 |}} * * * * * * * 注:重复测量方差分析中,由于不考虑被试间的变异性(即个体差异),所以SS组内只需考虑SS误差 ---- **和方的计算公式** * {{:ss和重复.png?150 |}} * {{:ss组间重复.png?220 |}} * {{:ss组内重复.png?100 |}} * {{:ss被试间.png?200 |}} * {{:ss误差.png?200 |}} ---- **自由度** * 共有5个自由度, 2个计算均方时要用到 - 总的 df = N-1 - __组间方差df = k-1__ - 组内方差df = N-k - 被试间方差df = n-1 - __误差方差df = (N-k) -(n-1)= N-k-n+1__ ====Variance decomposition of repeated measurement analysis of variance==== * SS of population = SS between Groups + SS within Groups = SS between Groups + SS between Subjects + SS Error * {{:repeated.png?400 |}} * * * * * * * Note: In repeated measures ANOVA, since variability between subjects (i.e. individual differences) is not considered, only SS error needs to be considered within the SS group. ---- **The calculation formula for sum of squares** * {{:ss和重复.png?150 |}} * {{:ss组间重复.png?220 |}} * {{:ss组内重复.png?100 |}} * {{:ss被试间.png?200 |}} * {{:ss误差.png?200 |}} ---- **degree of freedom** * There are a total of 5 degrees of freedom, 2 of which need to be used to calculate the mean square - Total df = N-1 - __Between group variance df = k-1__ - Within group variance df = N-k - Between subject variance df = n-1 - __error variance df = (N-k) -(n-1)= N-k-n+1__