scales
差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
scales [2024/03/03 13:16] – [例子] fairytaleee | scales [2024/03/05 01:58] (当前版本) – [例子 Examples] caomingsu | ||
---|---|---|---|
行 1: | 行 1: | ||
=====变量的测度等级 Scale of Variable===== | =====变量的测度等级 Scale of Variable===== | ||
- | 收集数据需要我们对所观察的现象进行测量,包括定性测量和定量测量。即,我们用变量来量化描述概念。\\ | + | 收集数据需要我们对所观察的现象进行测量,包括定性测量和定量测量。即,我们用**变量**来量化地描述概念。\\ |
- | * Collecting data requires us to measure the observed phenomena, including qualitative and quantitative measurements. That is, we use variables to quantify the description concept.\\ | + | * Collecting data requires us to measure the observed phenomena, including qualitative and quantitative measurements. That is, we use **variables** to quantify the description concept.\\ |
- | 不同的变量能够被量化的程度有所不同,变量的测度等级按照这种被量化的程度可以分为以下四类((这是我们提供的通俗阐释, [[scalesinAPA|点此查看]]《APA统计与研究方法词典》(APA Dictionary of Statistics and Research Methods)的定义。)): \\ | + | 不同的变量能够被量化的程度有所不同,变量的**测度等级**按照这种被量化的程度可以分为以下四类((这是我们提供的通俗阐释, [[scalesinAPA|点此查看]]《APA统计与研究方法词典》(APA Dictionary of Statistics and Research Methods)的定义。)): \\ |
- | * The degree to which different variables can be quantized varies, and the measurement | + | * The degree to which different variables can be quantized varies, and the **scale |
\\ | \\ | ||
| | ||
- | * Nominal scale,also known as the nominal measurement grade, it is the lowest measurement grade and consists of a series of types with different names. Named measures calibrate and classify observations, | + | * **Nominal scale**,also known as the nominal measurement grade, it is the lowest measurement grade and consists of a series of types with different names. Named measures calibrate and classify observations, |
| | ||
- | * Ordinal scale has a higher quantification level than nominal scale, and consists of a series of sequential categories. Ranking the observations by their size or number can provide sequential differences between different individuals. Sequential data points can be compared in size, but they are still qualitative rather than quantitative, | + | * **Ordinal scale** has a higher quantification level than nominal scale, and consists of a series of sequential categories. Ranking the observations by their size or number can provide sequential differences between different individuals. Sequential data points can be compared in size, but they are still qualitative rather than quantitative, |
| | ||
- | * Interval scale,also known as the spacing measurement grade,has a higher quantification level than ordinal scale. It is measured along a numerical scale.In contrast to the sequential measure, the distance between every two adjacent categories is equal. Generally used the actual measured value in a certain unit, and the difference or sum between the values can be obtained by addition and subtraction operations to reflect the size difference. But the true 0 point in the physical sense is missing, so multiplication and division is meaningless. Some psychological scales, such as the Ricott 5-point scale and the yes/no two-point scale, are common isometric scales. | + | * **Interval scale**,also known as the spacing measurement grade,has a higher quantification level than ordinal scale. It is measured along a numerical scale.In contrast to the sequential measure, the distance between every two adjacent categories is equal. Generally used the actual measured value in a certain unit, and the difference or sum between the values can be obtained by addition and subtraction operations to reflect the size difference. But the true 0 point in the physical sense is missing, so multiplication and division is meaningless. Some psychological scales, such as the Ricott 5-point scale and the yes/no two-point scale, are common isometric scales. |
**比例测度**(ratio scale):是最高的测度等级,除等距测度的特征外,还拥有绝对零点, | **比例测度**(ratio scale):是最高的测度等级,除等距测度的特征外,还拥有绝对零点, | ||
- | * Ratio scale is the highest measurement grade.In addition to the characteristics of equidistant measurements, | + | * **Ratio scale** is the highest measurement grade.In addition to the characteristics of equidistant measurements, |
- | ====特征表(Feature table)==== | + | ====特征表 Feature table==== |
^ 测度等级(scale level) | ^ 测度等级(scale level) | ||
^ 命名测度(nominal scale) | ^ 命名测度(nominal scale) | ||
行 21: | 行 21: | ||
^ 比例测度(ratio scale) | ^ 比例测度(ratio scale) | ||
- | ====例子==== | + | ====例子 |
- | * 命名测度:性别、12星座、人格、颜色; | + | |
- | * 顺序测度:游戏段位、轻中重、学历、Likert 5等级量表(不同程度之间不等距); | + | * Gender, blood type, occupation, 12 constellations, |
- | * 等距测度:IQ、温度(摄氏或华氏温标); | + | * 血型(ABO分类):每个样本都具有A、B、O、AB四种标签中的某一种,既不能没有血型,也不能拥有两种及以上的血型。不同被试之间只可以比较血型的相同和不同。 |
- | * 比例测度:长度、体重、年龄、温度(热力学温标)。 | + | |
- | ====统计方法的选择==== | + | * **顺序测度**:游戏段位、(病情等)轻/ |
+ | * Game Rank, (illness, etc.) light/ | ||
+ | * 游戏段位:每个样本都具有特定的、互不相容的段位,段位之间有高低之分,但不同段位的差别不相等,也不能从某几个段位通过加减运算得到另一个段位。 | ||
+ | |||
+ | * **等距测度**:IQ/ | ||
+ | * IQ/ | ||
+ | * IQ(离差智商):每个样本具有特定的IQ得分,IQ之间有高低之分,每两个相邻IQ值之间的差别相等,但IQ为0不表示不存在IQ。 | ||
+ | |||
+ | * **比例测度**:长度、距离、质量(体重)、心率、收入、年龄、温度(热力学温标)。 | ||
+ | * Length, distance, mass (weight), heart rate, income, age, temperature (Kelvin). | ||
+ | * 长度:每个样本具有特定的长度,长度有大小之分,可以连续、均匀地变化,长度为0表示长度不存在。 | ||
+ | |||
+ | ====统计方法的选择 | ||
各种测量类型的局限性直接关系到统计分析方法的选取,因此在开始收集实验数据之前,应格外注意。 | 各种测量类型的局限性直接关系到统计分析方法的选取,因此在开始收集实验数据之前,应格外注意。 | ||
- | === 命名测度 === | + | |
- | * 描述统计:可以使用频率分布和模式、百分比、次数、众数等; | + | The limitations of the various measurement types are directly related to the selection of statistical analysis methods, and therefore extra care should be taken before starting to collect experimental data. |
- | * 假设检验:可以进行非参数的统计检验,如卡方检验和Fisher检验。 | + | === 命名测度 |
- | * 绘图:条形图、饼状图。 | + | |
- | === 顺序测度 === | + | *Descriptive statistics: frequency distributions and modes, percentages, |
- | * 描述统计:可以使用频率分布和模式、中位数、序列、百分位数、等级相关系数等; | + | |
- | * 假设检验:可以进行非参数的统计检验,如卡方检验和Fisher检验,肯德尔和谐系数检验。 | + | *Hypothesis testing: non-parametric statistical tests such as [[卡方独立性检验|chi-square independence test]] and Fisher' |
- | * 绘图:条形图、饼状图、折线图,此外可以使用数据的四分位数(上四分位数、下四分位数)、中位数、最值绘制箱型图。 | + | |
- | === 等距测度 === | + | *Charting Graphing: bar charts, pie charts. |
- | * 描述统计:可以使用频率分布和模式、中位数、平均数、序列、标准差、方差、等级相关、积差相关。 | + | === 顺序测度 |
- | * 假设检验:可以进行参数的统计检验,如t检验、F检验,以及线性回归。 | + | |
- | * 绘图:条形图、饼状图、折线图、直方图、箱型图、散点图。 | + | *Descriptive statistics: frequency distributions and modes, medians, ranges, percentiles, |
- | === 比例测度 === | + | |
- | * 描述统计:可以使用频率分布和模式、中位数、平均数、序列、标准差、方差、几何平均数、变异系数等; | + | *Hypothesis testing: non-parametric statistical tests such as chi-square and Fisher' |
- | * 假设检验:可以进行参数的统计检验,如ANOVA、线性回归,以及其他等距量表可以使用的方法。 | + | |
- | * 绘图:条形图、饼状图、折线图、直方图、箱型图、散点图、小提琴图、山脊图等。 | + | *Charting Graphing: bar graphs, pie charts, line graphs, in addition box plots can be drawn using quartiles (upper quartile, lower quartile), medians, and maximum values of the data. |
+ | === 等距测度 | ||
+ | | ||
+ | * Descriptive statistics: frequency distributions and modes, medians, means, ranges, standard deviations, variances, rank correlations, | ||
+ | | ||
+ | * Hypothesis testing: Statistical tests of parameters such as [[t检验|t-test]], | ||
+ | | ||
+ | * Charting Graphing: bar charts, pie charts, line graphs, histograms, boxplots, scatter plots. | ||
+ | === 比例测度 | ||
+ | | ||
+ | * Descriptive statistics: frequency distributions and modes, medians, means, ranges, standard deviations, variances, geometric means, coefficients of variation, etc. can be used; | ||
+ | | ||
+ | * Hypothesis testing: statistical tests of parameters can be performed, such as [[ANOVA]], linear regression, and other methods that can be used with interval scales. | ||
+ | | ||
+ | * Charting Graphing: bar charts, pie charts, line graphs, histograms, boxplots, scatter plots, violin plots, ridge plots, and so on. | ||
scales.1709471772.txt.gz · 最后更改: 2024/03/03 13:16 由 fairytaleee