percentile
差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
percentile [2024/03/10 16:52] – 李佳熠2 | percentile [2024/03/12 07:29] (当前版本) – hant_g._cavendish | ||
---|---|---|---|
行 1: | 行 1: | ||
- | ====== 百分位数、百分位等级、插值法 | + | ====== 百分位数、百分位等级、插值法 |
- | **Percentile, | + | |
- | ---- | + | |
- | ===== 百分位数、百分位等级 | + | |
- | **1.百分位等级 (// | + | |
- | * In a distribution, | + | |
- | **2.百分位数 | + | ===== 百分位数、百分位等级 |
- | * The score that takes exactly this value is called the percentile of this percentile rank. | + | |
- | **3.例子:**有58%的同学分数为7分或在7分下,则分数X=7的百分位等级为58%,这个分数就是第58个百分位数。 | + | ==== 百分位等级 |
- | * For example, if 58% of the students have a score of 7 or below, the percentile | + | |
- | **4.注意事项:**在某一个案例中,分数有1-5分,对于分数4, 算得其对应的累积百分比是 95%;但注意,分数4意味着一个人得分在3.5和4.5之间,第95百分位数是4.5,而不是 4.0。 | + | 某一分布中, |
- | | + | In a distribution, the percentage |
- | ---- | + | ====百分位数 (Percentile) |
- | ===== 插值法 | + | |
- | **1.插值法 (// | + | |
- | 插值法的假设是在所求解点的附近1个组距单位区间之内的分数和对应的百分比的变化是线性的。 | + | |
- | **1.Interpolation: | + | 恰取这一值的分数称为这一百分位等级的百分位数。\\ |
- | The hypothesis of interpolation | + | The score that takes exactly this value is called |
- | **2.插值法步骤:**\\ | + | ==== 例子 (Example) ==== |
- | 假设要求的数值如图所示 | + | |
+ | 有 58% 的同学分数为 7 分或在 7 分下,则分数 X=7 的百分位等级为 58% ,这个分数就是第 58 个百分位数。\\ | ||
+ | If 58% of the students have a score of 7 or below, the percentile rank of X=7 is 58% , so the X=7 is the 58th percentile. | ||
+ | |||
+ | ==== 注意事项 (Notes) ==== | ||
+ | |||
+ | 在某一个案例中,分数有 1 - 5 分,对于分数 4 , 算得其对应的累积百分比是 95% ;但注意,分数 4 意味着一个人得分在 3.5 和 4.5 之间,第 95 百分位数是 4.5 ,而不是 4.0 。\\ | ||
+ | In one case, the score is 1 - 5 , and for a score of 4 , the corresponding cumulative percentage is 95% ; but note that a score of 4 means that a person scores between 3.5 and 4.5 , and the 95th percentile is 4.5 , not 4.0 . | ||
+ | |||
+ | ---- | ||
+ | ===== 插值法 (Interpolation) ===== | ||
- | **2.The steps of interpolation: | + | 插值法是一种求解两个数值之间某位置数值的方法,其假设是在所求解点的附近1个组距单位区间之内的分数和对应的百分比的变化是线性的。\\ |
- | Suppose | + | Interpolation is a method to calculate |
- | {{:插值法图.png? | + | ==== 插值法步骤 (The steps of interpolation) ==== |
- | (1)找到距求解点最近的两个区间(较远的区间不满足分数和对应的百分比线性变化的假设) | + | 假设要求的数值如图所示:\\ |
+ | Suppose the value to be solved is shown as follows: | ||
- | (1)Find the 2 nearest intervals to the value to be solves(Further intervals do not requires the hypothesis of scores and percentages changing linearly) | + | {{ :第二章:2.5: |
- | (2)根据数据列出数据:\\ | + | 1. 找到距求解点最近的两个区间(较远的区间不满足分数和对应的百分比线性变化的假设)。\\ |
+ | Find the 2 nearest intervals to the value to be solves (Further intervals do not requires the hypothesis of scores and percentages changing linearly). | ||
- | (2)List out by the known data:\\ | + | 2. 根据数据列出方程:\\ |
- | {{:插值法图二.png? | + | Make an equation based on the data: |
- | (3)由等式求得x=56 | + | {{ : |
- | (3)Calculate the equation, and get the result of x=56. | + | 3. 由等式求得结果 {{: |
+ | Calculate the equation, and get the result of {{: |
percentile.1710089526.txt.gz · 最后更改: 2024/03/10 16:52 由 李佳熠2