用户工具

站点工具


pearson相关的统计效应与效力

差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录前一修订版
后一修订版
前一修订版
pearson相关的统计效应与效力 [2023/04/06 00:20] zhangruihaopearson相关的统计效应与效力 [2024/04/12 11:38] (当前版本) aiyuheng
行 1: 行 1:
-**Pearson相关的统计效应与效力**+**Pearson相关的统计效应与效力(Statistical effects and potency of Pearson correlation)**
 ---- ----
  
   *用r的平方解释相关关系强度:一个变量的方差中,由X和Y间的相关解释的方差的比例。比如:当r=0.7时,Y变异的一部分能由X推出,r2=0.49,即Y 49%的变异能够由X推出。   *用r的平方解释相关关系强度:一个变量的方差中,由X和Y间的相关解释的方差的比例。比如:当r=0.7时,Y变异的一部分能由X推出,r2=0.49,即Y 49%的变异能够由X推出。
 +  *Pearson相关的效应:r=.10,小的效应;r=.30,中等效应;r=.50,大的效应。
 +  *Pearson相关统计效力的影响因素:①效应大小;②样本容量;③单尾/双尾。
 +  *相关描述两个变量之间的关系,但并不能解释变量相关的原因,即相关计算不能得到因果性推论。原因:在相关研究中, 研究者没有操纵一个 (或几个) 变量而保持其他变量不变。
 +* Strength of correlation explained in terms of r squared: The proportion of variance in a variable explained by the correlation between X and Y. For example, when r=0.7, a portion of the variation in Y can be derived from X, and r2=0.49, that is, 49% of the variation in Y can be derived from X.
  
 +*Pearson related effect: r=.10, small effect; r=.30, medium effect; r=.50, large effect.
 +
 +* The influencing factors of Pearson correlation statistical efficacy: ① effect size; ② Sample size; ③ Single tail/double tail.
 +
 +* Correlation describes the relationship between two variables, but does not explain why the variables are correlated, that is, correlation calculations do not yield causal inferences. Reason: In related studies, researchers did not manipulate one (or several) variables while keeping the others constant.
pearson相关的统计效应与效力.1680740435.txt.gz · 最后更改: 2023/04/06 00:20 由 zhangruihao