pearson相关的统计效应与效力
差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
pearson相关的统计效应与效力 [2023/04/06 00:20] – zhangruihao | pearson相关的统计效应与效力 [2024/04/12 11:38] (当前版本) – aiyuheng | ||
---|---|---|---|
行 1: | 行 1: | ||
- | **Pearson相关的统计效应与效力** | + | **Pearson相关的统计效应与效力(Statistical effects and potency of Pearson correlation)** |
---- | ---- | ||
*用r的平方解释相关关系强度:一个变量的方差中,由X和Y间的相关解释的方差的比例。比如:当r=0.7时,Y变异的一部分能由X推出,r2=0.49,即Y 49%的变异能够由X推出。 | *用r的平方解释相关关系强度:一个变量的方差中,由X和Y间的相关解释的方差的比例。比如:当r=0.7时,Y变异的一部分能由X推出,r2=0.49,即Y 49%的变异能够由X推出。 | ||
+ | *Pearson相关的效应:r=.10,小的效应;r=.30,中等效应;r=.50,大的效应。 | ||
+ | *Pearson相关统计效力的影响因素:①效应大小;②样本容量;③单尾/ | ||
+ | *相关描述两个变量之间的关系, | ||
+ | * Strength of correlation explained in terms of r squared: The proportion of variance in a variable explained by the correlation between X and Y. For example, when r=0.7, a portion of the variation in Y can be derived from X, and r2=0.49, that is, 49% of the variation in Y can be derived from X. | ||
+ | *Pearson related effect: r=.10, small effect; r=.30, medium effect; r=.50, large effect. | ||
+ | |||
+ | * The influencing factors of Pearson correlation statistical efficacy: ① effect size; ② Sample size; ③ Single tail/double tail. | ||
+ | |||
+ | * Correlation describes the relationship between two variables, but does not explain why the variables are correlated, that is, correlation calculations do not yield causal inferences. Reason: In related studies, researchers did not manipulate one (or several) variables while keeping the others constant. |
pearson相关的统计效应与效力.1680740435.txt.gz · 最后更改: 2023/04/06 00:20 由 zhangruihao