曼-惠特尼u检验
                差别
这里会显示出您选择的修订版和当前版本之间的差别。
| 两侧同时换到之前的修订记录前一修订版后一修订版 | 前一修订版 | ||
| 曼-惠特尼u检验 [2023/04/14 10:59] – yunyuqu | 曼-惠特尼u检验 [2024/04/24 05:08] (当前版本) – zwz | ||
|---|---|---|---|
| 行 1: | 行 1: | ||
| ====曼-惠特尼U检验(Mann-Whitney U Test)==== | ====曼-惠特尼U检验(Mann-Whitney U Test)==== | ||
| - | 1.使用场景 | + | **1. 使用场景(Usage Scenarios)** | 
| * 用于两个独立样本的检验; | * 用于两个独立样本的检验; | ||
| * 顺序性数据 | * 顺序性数据 | ||
| + | |||
| + | * For tests of two independent samples; | ||
| + | * For sequential data. | ||
| ---- | ---- | ||
| - | 2.步骤 | + | **2. 步骤(Steps)** | 
| * 对每种处理条件各得到一个独立的样本,以nA表示样本A中的被试数目,以nB表示样本B中的被试数目; | * 对每种处理条件各得到一个独立的样本,以nA表示样本A中的被试数目,以nB表示样本B中的被试数目; | ||
| * 将两个样本合并,将所有被试(nA +nB)排序; | * 将两个样本合并,将所有被试(nA +nB)排序; | ||
| 行 11: | 行 14: | ||
| * 如图:从下到上,对每个字母,分别计算下面有多少个另外的字母(如:等级6的B下面有多少个A),计算结果作为点数U | * 如图:从下到上,对每个字母,分别计算下面有多少个另外的字母(如:等级6的B下面有多少个A),计算结果作为点数U | ||
| * {{: | * {{: | ||
| + | |||
| + | * An independent sample was obtained for each treatment condition, with nA denoting the number of subjects in Sample A and nB denoting the number of subjects in Sample B. | ||
| + | * Combine the two samples and rank all subjects (nA + nB). | ||
| + | * Determine whether scores from two samples are systematically clustered at opposite ends of the metric in mixed ordering. | ||
| + | * As shown: from bottom to top, for each letter, count how many other letters are below it (e.g., how many A's are below B on a scale of 6), and use the result as the number of points U. | ||
| ---- | ---- | ||
| - | 3.公式 | + | **3. 公式(Formulas)** | 
| * UA+UB = nA*nB | * UA+UB = nA*nB | ||
| * UA= nA*nB+[nA(nA+1)/ | * UA= nA*nB+[nA(nA+1)/ | ||
| * UB= nA*nB+[nB(nB+1)/ | * UB= nA*nB+[nB(nB+1)/ | ||
| - | * 选择UA、UB中较小点数作为U | ||
| ---- | ---- | ||
| - | 4.假设检验 | + | **4. 假设检验(Hypothesis Testing)** | 
| - | * H0:两处理之间无系统差异 | + | |
| - | * H1:两处理之间有系统差异 | + | **第一步:给出虚无假设和备择假设** | 
| + |  | ||
| + |  | ||
| + | **第二步:得到分界点Ucrit** | ||
| * 根据nA, | * 根据nA, | ||
| - |  | + | **第三步:计算U** | 
| - |  | + | * 选择UA、UB中较小点数作为U | 
| - |  | + | **第四步:Mann-Whitney U的结果分析** | 
| - |  | + |  | 
| + |  | ||
| + |  | ||
| + | |||
| + | **Step 1: Give null hypotheses and alternative hypotheses** | ||
| + | * **H0**:Without systematic differences between the two treatments. | ||
| + | * **H1**:With systematic differences between the two treatments. | ||
| + | **Step2:obtain Ucrit of boundary point** | ||
| + | * According to nA,nB, look up the table to get Ucrit. | ||
| + | **Step 3: Calculate U** | ||
| + | * Select the smaller of UA and UB as U. | ||
| + | **Step 4: Analysis of results for Mann-Whitney U** | ||
| + | * If U = 0, one of the samples is not scored . There is no overlap between the two samples and the difference is the largest. | ||
| + | * The larger U is, the closer the two samples are. | ||
| + | * ∴Only when Uobs ≤ Ucrit can H0 be rejected (the opposite of a parametric test). | ||
| + | |||
| + | ---- | ||
| + | **5. 大样本情况下的正态近似(Normal approximation in the case of large samples)** | ||
| + | * 当n>20, Mann-Whitney U统计量接近正态分布 | ||
| + | * When n>20, Mann-Whitney U statistic is close to normal distribution. | ||
| + | |||
| + | * μ= nAnB/2 | ||
| + | * σ= sqrt(nAnB (nA+nB+1)/ | ||
| + | * {{: | ||
| + | |||
| + | ---- | ||
| + | **6. 统计前提(Statistical Prerequisites)** | ||
| + | * 要求观察独立 | ||
| + | * 要求变量是连续的,即较少相同的等级 | ||
| + | * 不要求正态分布 | ||
| + | * 不要求方差同质 | ||
| + | |||
| + | * Requiring independent observation. | ||
| + | * Requiring variables to be continuous, i.e., less equal in rank. | ||
| + | * Not requiring normal distribution. | ||
| + | * Not requiring variance to be homogeneous. | ||
曼-惠特尼u检验.1681469979.txt.gz · 最后更改: 2023/04/14 10:59 由 yunyuqu
                
                