回归估计的标准误
                差别
这里会显示出您选择的修订版和当前版本之间的差别。
| 后一修订版 | 前一修订版 | ||
| 回归估计的标准误 [2023/04/07 08:32] – 创建 戴娉婷 | 回归估计的标准误 [2024/04/12 11:40] (当前版本) – aiyuheng | ||
|---|---|---|---|
| 行 1: | 行 1: | ||
| - | ==== 回归估计的标准误 ==== | + | ==== 回归估计的标准误(Standard error of regression estimation) | 
| 1、回归方程是一种预测,但并未给出预测准确性的信息; | 1、回归方程是一种预测,但并未给出预测准确性的信息; | ||
| 2、回归估计的标准误给出回归线和数据点之间标准距离的量度; | 2、回归估计的标准误给出回归线和数据点之间标准距离的量度; | ||
| + | 1. The regression equation is a prediction, but it does not give information about the accuracy of the prediction; | ||
| + | |||
| + | 2, the standard error of regression estimation gives a measure of the standard distance between the regression line and the data point; | ||
| ---- | ---- | ||
| - | === 如何计算回归估计的标准误 === | + | === 如何计算回归估计的标准误(How to calculate the standard error of regression estimation) | 
| - | 1、首先计算误差和方 | + | 1、首先计算误差和方(First calculate the error sum of squares) | 
| SS< | SS< | ||
| + | |||
| + | 2、将误差的和方除以自由度,开方 | ||
| + | |||
| + | 自由度为:df = n-2 | ||
| + | Divide the sum of the errors by the degrees of freedom, square root | ||
| + | |||
| + | The degrees of freedom are: df = n-2 | ||
| + | |||
| + | S< | ||
| + | |||
| + | ---- | ||
| + | === 标准误和相关系数之间的关系(The relationship between standard error and correlation coefficient) === | ||
| + | SS< | ||
| + | |||
| + | |||
回归估计的标准误.1680856362.txt.gz · 最后更改: 2023/04/07 08:32 由 戴娉婷
                
                