

Temporal Dynamic Analysis

Chao-Gan YAN, Ph.D. 严超赣

yancg@psych.ac.cn http://rfmri.org The R-fMRI Lab Institute of Psychology, Chinese Academy of Sciences

Introduction

RESTING-STATE ACTIVITY IS IMPORTANT, IF THE AMOUNT OF ENERGY DEVOTED TO IT IS ANY INDICATION.

Smith , 2012. Nature

Introduction

Computational Methods

- · Regional characteristics of a single voxel
- Relational characteristics among multiple voxels

13 Zuo and Xing, 2014. Neurosci Biobehav Rev

Introduction

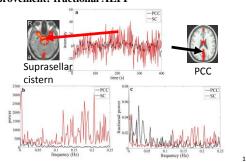
Regional characteristics of a single voxel

Amplitude measures. For a given frequency:

RMS: root mean square (Biswal et al., 1995)

RSFA: standard deviation (Kannurpatti et al. 2008)

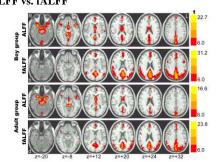
ALFF: amplitude of low-frequency fluctuations (Zang


et al., 2007)

fALFF: fractinal ALFF (Zou et al., 2008)

14
Zuo and Xing, 2014. Neurosci Biobehav Rev

Introduction


Improvement: fractional ALFF

Zou et al., 2008. J Neurosci Methods

Introduction

ALFF vs. fALFF

Zou et al., 2008. J Neurosci Methods

Regional characteristics of a single voxel

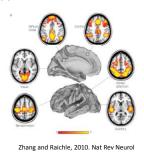
- Degree of power-law fitting (Kiviniemi et al., 2000)
- Fractal dimension or Hurst exponent (Maxim et al., 2005; Wink et al., 2008)
- Multi-scale or approximate entropy (Smith et al., 2014; Liu et al., 2013a)
- Lyapunov exponent (Xie et al., 2008)

17 Zuo and Xing, 2014. Neurosci Biobehav Rev

Introduction

Relational characteristics among multiple voxels

- · Functional Connectivity
- · Effective Connectivity


18

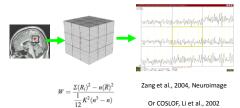
Introduction

How do we detect organized patterns of intrinsic activity? Resting State Functional Connectivity Correlate

Introduction

• Correlation

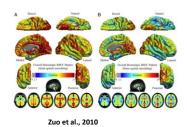
20


Introduction

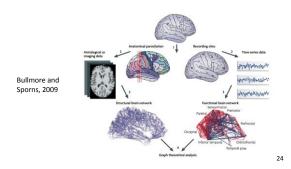
• ICA space (voxels) The space (voxels) The

Introduction

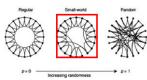
Regional Homogeneity (ReHo)


Similarity or coherence of the time courses within a functional cluster

Voxel Mirrored Homotopic Connectivity (VMHC)



23


Introduction

Graph theoretical analysis

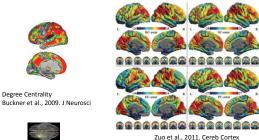
Introduction

Graph theoretical analysis

Watts and Strogatz, 1998. Nature

Regular: high Cp high Lp

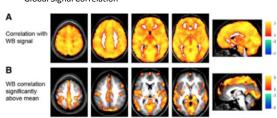
Small-world: low Lp


Random: low Cp low Lp

Small-world networks contain many local links and a few long-distance links (so-called "shortcuts").

Cp: average clustering of a network Lp: average shortest path length of a network

Introduction


Voxel-wise network centrality metrics

26

Introduction

Global Signal Correlation

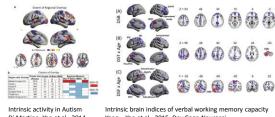
Fox et al., 2009. J Neurophysiol

Introduction

Voxel strength: ALFF/fALFF

Regional synchronization: ReHo

Homotopic connectivity: VMHC


Global connectivity: Degree Centrality

GSCorr

28

Head motion control Standardization Yan et al., 2013b. Neuroimage Yan et al., 2013a. Neuroimage

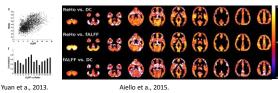
Introduction

Di Martino, Yan et al., 2014 Mol Psychiatry

Yang, , Yan et al., 2015. Dev Cogn Neurosci

29

31

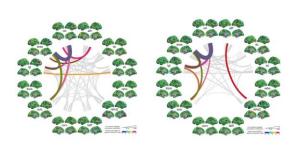

30

Introduction

Interdependencies among different intrinsic brain function measures

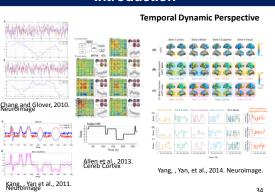
- · How concordant differing indices are with respect to their variation across voxels
- · How concordant different indices are with respect to their variation from one individual to the next
- · How concordant differing indices are with respect to their variation over time

Introduction



Magn Reson Imaging

Neuroimage


32

Introduction

Yang et al., 2016. Brain Struct Funct

Introduction

The goal of the present work is to provide a comprehensive understanding of interdependencies among different intrinsic brain activity measures within and across individuals.

Materials and Methods

Enhanced Nathan Kline Institute - Rockland Sample

173 neurotypical individuals ages between ages 8 and 86 with quality pass datasets (mean age: 44.5; 117 females)

Nooner et al., 2012

Materials and Methods

Preprocessing

R-fMRI Indices

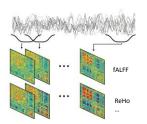
35

Voxel strength: ALFF/fALFF

Regional synchronization: ReHo

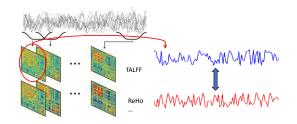
Materials and Methods

Homotopic connectivity: VMHC

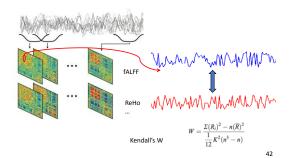

Global connectivity: Degree Centrality

GSCorr

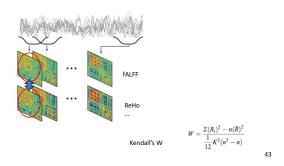
39


Materials and Methods

Dynamic R-fMRI Indices


Materials and Methods

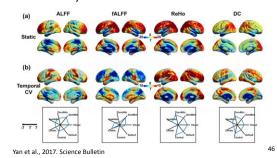
Correlation between Global Mean of R-fMRI Indices


Materials and Methods

Voxel-wise Concordance Index

Materials and Methods

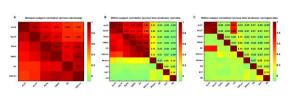
Volume-wise Concordance Index

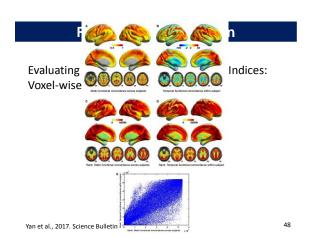

Materials and Methods

Age Effects

A given measure = $b0 + b1 \times Age + b2 \times Sex + b3 \times meanFD + error$

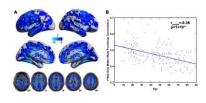
Results and Discussion


Static and Dynamic R-fMRI Indices


44

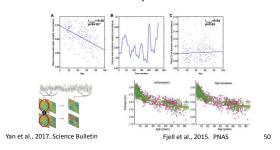
Results and Discussion

Evaluating Concordance among R-fMRI Indices: Global-Level Analyses

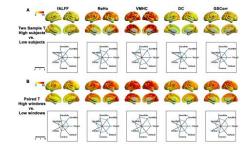


Yan et al., 2017. Science Bulletin 47

Results and Discussion

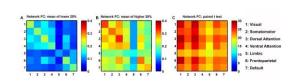

Evaluating Concordance among R-fMRI Indices: Voxel-wise Analyses

Yan et al., 2017. Science Bulletin


Results and Discussion

Evaluating Spatial Concordance among R-fMRI Indices: Volume-wise Analysis

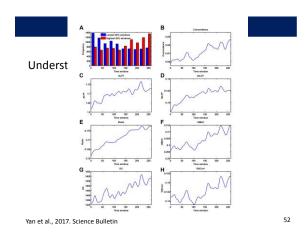
Results and Discussion


Understanding Low/High Concordance

Yan et al., 2017. Science Bulletin

Results and Discussion

Understanding Low/High Concordance



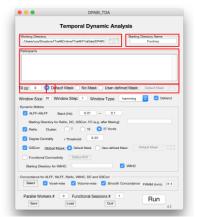
Yan et al., 2017. Science Bulletin

51

52

52

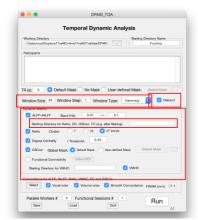
DPABI TDA



Starting Directory Name

> **Participants** TR

Mask

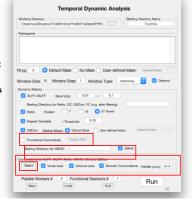


Based on DPARSF Preprocessed Data

Window Setup

Detrend

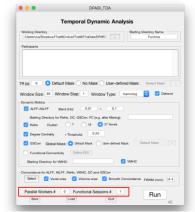
Dynamic Indices If need filtering

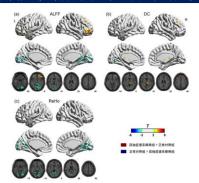

Based on DPARSF Preprocessed Data

> **Functional** Connectivity

Symmetric for VMHC

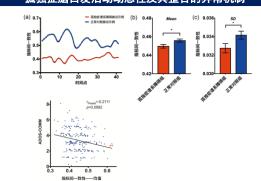
Concordance **Concordance Settings**




DPABI_TDA

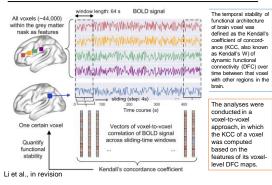
Based on DPARSF Preprocessed Data

Parallel Settings



孤独症脑自发活动动态性及其整合的异常机制

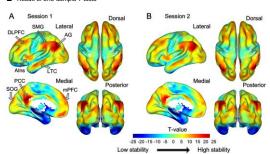
鲁彬,,严超赣*,2018.科学通报


孤独症脑自发活动动态性及其整合的异常机制

鲁彬,,严超赣*,2018. 科学通报.

47

Definition of stability of functional architecture


Profile of stability of intrinsic functional architecture

- Resting-state fMRI data of 216 young adults from the CoRR (Consortium for Reliability and Reproducibility) release (Zuo, et al., 2014) was used. The data contained two scanning sessions acquired at different days, and the two sessions were analyzed separately.
- The derived KCC for each subject was z-standardized across a grey matter mask, to increase comparability across participants and conditions.
- ☐ One-sample T-tests with zero

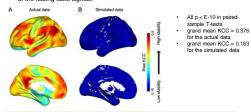
Li et al., in revision

Profile of stability of intrinsic functional architecture

■ Result of one-sample T-tests

Li et al., in revision

Profile of stability of intrinsic functional architecture


 Comparison of functional stability between high-order associative and primary visual regions.

Li et al., in revision

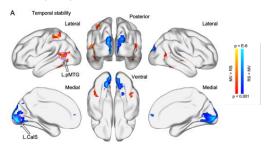
Profile of stability of intrinsic functional architecture

- ☐ Was the stability of functional architecture above random level?
- Simulated data was created by randomizing the phases while keeping the amplitude of the resting-state signals.

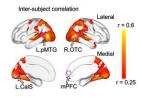
The stability of functional architecture doesn't exist in simulated random data, while distributed across the brain in a biological meaningful way.

Li et al., in revision

Stability during natural viewing


- A movie-watching task was employed, during which viewers had to constantly integrate changing audiovisual stimuli over time, in order to comprehend the movie.
- The dataset from the HBN (Healthy Brain Network) release (Alexander, et al., 2017) was analyzed. The fMRI data was acquired from 32 children and adolescents, and there were two runs of resting-state scanning, followed by another run of movie watching.
- ☐ The movie was a 10-min clip of an animated film named "Despicable Me"

Stability during natural viewing


■ Result of pair-sample T-tests

Li et al., in revision

Stability during natural viewing

- ☐ Inter-subject correlation (ISC) of neural activity (Hasson, et al., 2010), which can reveal which brain region was engaged when the subjects watched the movie.
- $\hfill\Box$ Threshold: r > 0.25 in average and p < 0.001 in one-sample T-test with 0

Li et al., in revision

Stability during natural viewing

- The stability of functional architecture of a certain region was measured based on the whole-brain DFC for that region. A further step is to probe which connections specifically contributed to the difference in stability observed between states.
- ☐ ROI: left pMTG, left Calcarine sulcus
- DFC variation for each ROI was calculated as standard deviation of DFC across sliding-time windows. At the group-level analyses, the DFC variation was compared between the two states.

Thanks for your attention!