

Start Directory User-defined
Funima Manualiv
QC: Raw T1
QC: Raw Fun
QC: Normalization
Threshold QC Score
Generate Group Masks
Threshold Coverage
Motion Report

 p_{1}^{2} , Yar et al. 2011, Hum Brain Mapp

ANOVA or ANCOVA

Bited Effect Analysis

 Imaging measure

 Brougl Condition1

 Group1 Condition1

 Group2 Condition1

 Group2 Condition2

 Group2 Condition2

39

 *_ConditionEffect_T.nii - the T values of condition differences (corresponding to the first condition minus the second condition) (WithinSubjectFactor)
 *_Interaction_F.nii - the F values of interaction (BetweenSubjectFactor by WithinSubjectFactor)
 *_Group_TwoT.nii - the T values of group differences (corresponding to the first group minus the second group). Of note: the two conditions will be averaged first for each subject. (BetweenSubjectFactor)

45

http://rfmri.org/DemoData {Download}/ProcessingDemoData/StatisticalDemo/AD_MCI_NC/

ALFF: AD - NC Two Sample T Test:

Applied smooth kernel in preprocessing: [4 4 4]
Smooth kernel estimated on 4D residual: [6.77 6.88 6.71]
Smooth kernel estimated on statistical image (T to Z, as in easythresh): [6.90 7.33 6.94]

ReHo: AD - NC Two Sample T Test:

- Applied smooth kernel in preprocessing: [4 4 4]
 Smooth kernel estimated on 4D residual: [8.10 8.50 7.93]
 Smooth kernel estimated on statistical image (T to Z, as in easythresh): [8.33 8.94 8.24]

Thus, only using smooth kernel applied in preprocessing is NOT sufficient!!!

44

46

51

False Discovery Rates (FDR) correction

- Family-Wise Error (FWE) correction
 - Bonferroni correction: 0.05/5=0.01
 - Gaussian Random Field theory correction
 - Monte Carlo simulations (AlphaSim)
 - Threshold-Free Cluster Enhancement
 - Permutation test

52

FDR Theory

Number of errors committed when testing m null hypotheses

	Declared non-significant	Declared significant	Total
True null hypotheses	U	v	<i>m</i> 0
Non-true null hypotheses	Т	S	$m - m_0$
	$m - \mathbf{R}$	R	m

• False discovery rate Q_e=E(V/(V+S))=E(V/R)

Benjamini and Hochberg, 1995, Journal of the Royal Statistical Society

FDR Theory

• Let H_1, \cdots, H_m be the null hypotheses and P_1, \cdots, P_m their corresponding p-values. Order these values in increasing order and denote them by $P_{(1)}, \cdots, P_{(m)}$. For a given q, find the largest k such that $P_{(k)} \leq kq/m$.

•Then reject (i.e. declare positive) all $H_{(i)}$ for i = 1, ..., k.

FDR Theory

56

58

55

57

	Multiple	Comparis	on (Correcti	on
Cl Size	Frequency	Cum Prop p/Voxel	Max Freq	Alpha	
1	235971	0.619898	0.009613	0	1.000000
2	76150	0.819945	0.006282	0	1.000000
3	32297	0.904789	0.004131	0	1.000000
4	15940	0.946664	0.002763	0	1.000000
5	8476	0.968930	0.001863	0	1.000000
6	4786	0.981503	0.001265	1	1.000000
7	2767	0.988772	0.000860	19	0.999000
8	1606	0.992991	0.000586	51	0.980000
9	1011	0.995647	0.000405	127	0.929000
10	585	0.997184	0.000276	132	0.802000
11	391	0.998211	0.000194	172	0.670000
12	236	0.998831	0.000133	146	0.498000
13	164	0.999262	0.000093	107	0.352000
14	98	0.999519	0.000063	78	0.245000
15	69	0.999701	0.000043	61	0.167000
16	37	0.999798	0.000029	30	0.106000
17	22	0.999856	0.000020	22	0.076000
18	22	0.999913	0.000015	21	0.054000
19	11	0.999942	0.000010	11	0.033000
20	7	0.999961	0.000007	7	0.022000
21	5	0.999974	0.000005	5	0.015000
22	5	0.999987	0.000003	5	0.010000
23	4	0.999997	0.000002	4	0.005000
24	1	1.000000	0.000000	1	0.001000

	Fami	ily w	vise Er	rror	Rate			
TABLE I. FWER an	nd cluster size of ALI Theor	FF (smooth γ, AFNI 3d	nness: 7.94 × 7.3 ClustSim, and [81 × 6.86) SPABI Alph	without GSR un naSim	der correc	tions of GRF	
(One-taile	d twice)	AFNI	3dClustSim	DPAE	I AlphaSim	GRF		
Voxel threshold	Cluster threshold	FWER	Cluster size	FWER	Cluster size	FWER	Cluster size	
P < 0.01 (Z > 2.33)	P < 0.05	40.0%	66.05 ± 0.73	48.3%	60.24 ± 1.68	36.5%	69.35 ± 1.09	
P < 0.005 (Z > 2.58)	P < 0.05	27.6%	43.59 ± 0.42	34.9%	39.45 ± 1.13	24.5%	46.70 ± 0.75	
P < 0.001 (Z > 3.09)	P < 0.05	11.5%	19.98 ± 0.34	15.8%	18.40 ± 0.61	10.6%	21.29 ± 0.46	
P < 0.0005 (Z > 3.29)	P < 0.05	9.6%	14.53 ± 0.25	12.5%	13.93 ± 0.54	8.2%	15.82 ± 0.39	
P < 0.01 (Z > 2.33)	P < 0.025	30.8%	74.50 ± 1.14	39.0%	67.72 ± 2.36	27.7%	78.96 ± 1.24	
P < 0.005 (Z > 2.58)	P < 0.025	23.7%	47.01 ± 0.59	27.1%	44.48 ± 1.60	18.3%	53.48 ± 0.85	
P < 0.001 (Z > 3.09)	P < 0.025	8.6%	22.63 ± 0.25	10.6%	21.00 ± 0.87	6.8%	24.94 ± 0.41	
P < 0.0005 (Z > 3.29)	P < 0.025	5.8%	17.33 ± 0.22	7.9%	16.03 ± 0.71	5.1%	18.51 ± 0.50	
			20 vs. 20 I	Permutati	on 1000 time	s		
Chen, Lu, Yan*,	2018. Human Br	rain Mapp	oing				75	

	as FDR correction												
					1	_			FWER				
	Voxel threshold	Cluster threshold	ALFF	fALFF	ReHo	DC	VMHC	ALFF with GSR	fALFF with GSR	ReHo with GSR	DC with GSR	VMHC with GSR	ALFF (8 mm smoothed)
Smoothness (mm, x×y×z)			7.94 × 7.31 ×	7.34 × 7.42 ×	9.36 × 8.72 ×	7.86 × 7.97 ×	6.31 × 6.87 ×	7.99 × 7.31 ×	7.32 × 7.41 ×	9.24 × 8.56 ×	8.06 × 8.16 ×	6.11 × 6.61 ×	11.88 × 11.53 ×
AFNI 3dClustSim (one-tailed)	P < 0.0005 (Z > 3.29)	P < 0.025	5.8%	6.1%	7.3%	8.5%	6.0%	5.3%	6.6%	6.9%	6.8%	6.4%	5.5%
DPABI AlphaSim (one-tailed)			7.9%	8.3%	8.5%	10.2%	9.0%	7.8%	7.7%	7.8%	8.3%	9.6%	6.9%
GRF (one-tailed) PT cluster extent	P<0.02	P < 0.05	5.8%	3.6%	5.8%	4.0%	5.2%	4.8%	3.9%	5.5%	5.2%	4.3%	4.4% 5.3%
(two-tailed)	(Z > 2.53) P < 0.01 (Z > 2.58)	P < 0.05	5.4%	4.0%	5.7%	4.6%	5.5%	5.3%	3.8%	5.3%	5.0%	4.5%	5.4%
	P < 0.002 (Z > 3.09)	P < 0.05	4.5%	4.1%	5.3%	4.8%	4.2%	4.5%	5.0%	5.1%	4.7%	4.3%	4.4%
	P < 0.001 (Z > 3.29)	P < 0.05	4.8%	4.5%	4.5%	4.9%	3.4%	4.3%	4.8%	5.4%	4.2%	3.9%	4.1%
PT TFCE PT VOX			4.6%	3.9% 4.9%	5.7% 5.7%	5.0%	4.3%	5.3%	4.2%	5.5% 5.6%	4.7%	4.8%	4.6%

TABLE III. Test-retest reliability of sex differences for all R-MRI metrics with and without GSR under correction three kinds of cluster-based correction with the strictest threshold, six kinds of PEhased correction and FDR cor- rection, calculated between the first and second sessions in the CORR dataset												
						ſ	Test-rete	st reliability	dice coef	ficient)		
	Voxel threshold	Cluster threshold	ALFF	fALFF	ReHo	DC	VMHC	ALFF with GSR	fALFF with GSR	ReHo with GSR	DC with GSR	VMHC with GSI
AFNI 3dClustSim (one-tailed)	P < 0.0005 (Z > 3.29)	P < 0.025	0.65	0.51	0.50	0.34	0.39	0.64	0.48	0.44	0.28	0.24
DPABI AlphaSim (one-tailed)			0.65	0.51	0.49	0.34	0.39	0.64	0.48	0.45	0.27	0.27
GRF (one-tailed)			0.64	0.51	0.50	0.35	0.39	0.65	0.48	0.43	0.28	0.24
PT cluster extent correction	P < 0.02 (Z > 2.33)	P < 0.05	0.65	0.70	0.56	0.45	0.40	0.62	0.68	0.45	0.30	0.40
(two-tailed)	P < 0.01 (Z > 2.58)	P < 0.05	0.67	0.66	0.52	0.32	0.33	0.60	0.63	0.46	0.27	0.32
	P < 0.002 (Z > 3.09)	P < 0.05	0.63	0.55	0.51	0.36	0.38	0.63	0.52	0.47	0.23	0.32
	P < 0.001	P < 0.05	0.64	0.51	0.48	0.37	0.38	0.64	0.48	0.44	0.28	0.26
PT TFCE	(2.2.5 (12.2.7)		0.68	0.75	0.54	0.48	0.44	0.66	0.74	0.44	0.31	0.42
FDR correction			0.64	0.67	0.54	0.39	0.37	0.63	0.64	0.47	0.23	0.14

Reproducibility of R-fMRI Metrics on the Impact of Different Strategies for Multiple Comparison Correction and Sample Sizes

- Permutation test with TFCE reached the best balance between FWER and reproducibility
- Although R-fMRI indices attained moderate reliabilities, they replicated poorly in distinct datasets (replicability < 0.3 for between-subject sex differences, < 0.5 for within-subject EOEC differences)
- For studies examining effect sizes similar to or even less than those of sex differences, results from a sample size <80 (40 per group) should be considered preliminary, given their low reliability (< 0.23), sensitivity (< 0.02) and PPV (< 0.26).

81

80

Image Calculator

Example expressions:

- (a) g1-1 Subtract 1 from each image in group 1
- (b) g1-g2 Subtract each image in group 2 from each corresponding image in group1
- (c) i1-i2 Subtract image 2 from image 1
- (d) i1>100 Make a binary mask image at threshold of 100
- (e) g1.*To4D((i1>2.3),100) Make a mask (threshold at 2.3 on i1) and then apply to each image in group 1 (group 1 has 100 images)
- (f) mean(g1) Calculate the mean image of group 1
- (g) (i1-mean(g1))./std(g1) Calculate the z value of i1 related to group 1
- (h) corr(g1,g2,"temporal") Calculate the temporal correlation between two
- groups, i.e. one correlation coefficient between two "time courses" for each voxel. (i) corr(g1,g2,"spatial") Calculate the spatial correlation between two groups, i.e.
- one correlation coefficient between two images for each "time point".

93

92

Reading and Writing functions

Reading: [Data Header] = y_Read('brodmann.nii'); Data – 181*217*181 double

Header – Structure

Processing: BA20Data = (Data==20); y_ReadRPI y_ReadAll

94

Writing:

y_Write(BA20Data, Head, 'BA20.img');

94

