

Resting metabolism Lev bar bar Lev bar bar Lev bar bar Resting metabolism Lev bar bar bar Resting metabolism Concert Constant prior Constant p

Resting-State fMRI: Principles

Δ

8

Resting-State fMRI: Principles

9

Computational Methodology

- Integration approach
- Regional approach
- Graphical approach

12

33

Graphical approach • Graph theoretical analysis: (Salvador et al., 2005, Bullmore and Sporns, 2009) • Degree connectivity, functional connectivity density, degree centrality: (Buckner et al., 2009; Tomasi et al., 2010; Cole et al., 2010; Zuo et al., 2012) • ...

32

Computational Methodology

Test-retest Reliability

				Test-retest reliability (dice coefficient)								
	Voxel threshold	Cluster xel threshold threshold	ALFF	fALFF	ReHo	DC	VMHC	ALFF with GSR	fALFF with GSR	ReHo with GSR	DC with GSR	VMHC with GSR
AFNI 3dClustSim (one-tailed)	P < 0.0005 (Z > 3.29)	P < 0.025	0.65	0.51	0.50	0.34	0.39	0.64	0.48	0.44	0.28	0.24
DPABI AlphaSim (one-tailed)			0.65	0.51	0.49	0.34	0.39	0.64	0.48	0.45	0.27	0.27
GRF (one-tailed)			0.64	0.51	0.50	0.35	0.39	0.65	0.48	0.43	0.28	0.24
PT cluster extent correction	P < 0.02 (Z > 2.33)	P < 0.05	0.65	0.70	0.56	0.45	0.40	0.62	0.68	0.45	0.30	0.40
(two-tailed)	P < 0.01 (Z > 2.58)	P < 0.05	0.67	0.66	0.52	0.32	0.33	0.60	0.63	0.46	0.27	0.32
	P < 0.002 (Z > 3.09)	P < 0.05	0.63	0.55	0.51	0.36	0.38	0.63	0.52	0.47	0.23	0.32
	P < 0.001	P < 0.05	0.64	0.51	0.48	0.37	0.38	0.64	0.48	0.44	0.28	0.26
PT TFCE	(255 5325)		0.68	0.75	0.54	0.48	0.44	0.66	0.74	0.44	0.31	0.42
FDR correction			0.64	0.67	0.54	0.39	0.37	0.63	0.64	0.47	0.23	0.14
FDR correction For test-retest reli	ability for all the	31 kinds of	0.64 f multip	0.67 ble com	0.54 parison	0.39 corre	0.37	0.63 ategies, ple	0.64 ase see Sup	0.47 porting Inf	0.23 ormation T	0.29 able S13

IABLE I. FWER and c	uster size of AL Theor	FF (smooth y, AFNI 3d	ness: 7.94 × 7.3 ClustSim, and E	II × 6.86) v DPABI Alph	without GSR un aSim	der correc	ections of GRF			
(One-tailed tw	ice)	AFNI	3dClustSim	DPAB	I AlphaSim		GRF			
/oxel threshold 0	Cluster threshold	FWER	Cluster size	FWER	Cluster size	FWER	Cluster size			
< 0.01 (Z > 2.33) I	° < 0.05	40.0%	66.05 ± 0.73	48.3%	60.24 ± 1.68	36.5%	69.35 ± 1.09			
< 0.005 (Z > 2.58) I	P < 0.05	27.6%	43.59 ± 0.42	34.9%	39.45 ± 1.13	24.5%	46.70 ± 0.75			
< 0.001 (Z > 3.09) F	P < 0.05	11.5%	19.98 ± 0.34	15.8%	18.40 ± 0.61	10.6%	21.29 ± 0.46			
< 0.0005 (Z > 3.29) I	P<0.05	9.6%	14.53 ± 0.25	12.5%	13.93 ± 0.54	8.2%	15.82 ± 0.39			
< 0.01 (Z > 2.33) I	P < 0.025	30.8%	74.50 ± 1.14	39.0%	67.72 ± 2.36	27.7%	78.96 ± 1.24			
< 0.005 (Z > 2.58) I	P < 0.025	23.7%	47.01 ± 0.59	27.1%	44.48 ± 1.60	18.3%	53.48 ± 0.85			
< 0.001 (Z > 3.09) F	P < 0.025	8.6%	22.63 ± 0.25	10.6%	21.00 ± 0.87	6.8%	24.94 ± 0.41			
< 0.0005 (Z > 3.29)	P<0.025	5.8%	17.33 ± 0.22	7.9%	16.03 ± 0.71	5.1%	18.51 ± 0.50			

Test-retest Reliability **Test-retest reliability** Sex differences in test and retest Time T1 Time T2 * * * * V1: significant V₁ Vo voxels in test V V2: significant voxels in retest Voverlap: voxels $Dice = \frac{2 \times V_{ov}}{V}$ significant in both lap Statistical significant voxels $V_1 + V_2$ test and retest Chen, Lu, Yan*, 2018. Human Brain Mapping

Chen, Lu, Yan^{*}, 2018. Human Brain Mapping

静息态功能磁共振	数据处理·	平台
Version Reunoscience Version Reunoscience Version State MRI Versi	Slice timing correction	Realignment
Syst Neurosci. 共同通讯作者;持续更新至今	Co-registration	Check Registration!
Cited: >2000 times	Smoothing	传统fMRI处
DPARSF: 流水 线式fMRI数据处 理软件		理软件:参 数多,设置 繁,易出错
1 日本語の学校では、1 日本語の	配准 平滑	^{滤波} 结果 67

Working Directory Quality Control	- Start Directory User-defined
/Users/ycg/ITraAll/ITraData/DPARSF_Updating/AdvanceTest3	Funimg Manually
Sub_001	
	QC: Haw 11
	QC: Raw Fun
	QC: Normalization
	Threshold QC Score
	Generate Group Masks
	Threshold Coverage
	Motion Report
	Threshold Motion

DPARSEA
Data Processing Assistant for Resting-State fMRI
Advanced Edition DPARSE A

amber: 0 Silce Code: 17357911 Reference Silce: 0 S Realign User-Specific Head Motion ent Fun' S AutoMask S T 1 DICOM to NFTI Crop T1 S Recent T1' S Bet S T1 Coreg to Fi

TR (s):

ove First 10 T

Alsers/conDrophox/TraAlOr

P.... 1 EPI DICOM to NIFTI Apply Mats d Re

Sub_002 Sub_002 Sub_003

AutoMask sw Segment + DARTEL ariates Regression Polym Hapecific 12

N

110

R-fMRI

measures

Calculation

Voxel-mirrored homotopic

111

- The second sec
- over x axis). 3) Normalize the T1 image in MNI space (e.g., wco*.img or wco*.nii under T1ImgNewSegment or T1ImgSegment) for each subject to the symmetric T1 template (created in Step 2), and apply the transformations to the functional data (which have been normalized to MNI space beforehand). Please see a reference from Zuo et al., 2010.

114 🐗

