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1st level analysis: within-subject analysis

analysing the time course of the fMRI signal for every 
single subject separately
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2nd level analysis: group level analysis
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What are we looking at?

• Our data is a time-series capturing 
changes in blood oxygenation (fMRI signal 
intensities) in each voxel, tracked over the 
time of our experiment
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Dealing with this data statistically

• Mass univariate approach: using the same statistical analysis on every single voxel 

We are looking at the relationship between:
• Y = dependent variable (BOLD signal)
• X = regressor (experimental manipulation)

• Null hypothesis: our experimental manipulation has no effect on Y

• Our results are SPMs (Statistical Parametric Maps)
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The General Linear Model
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Mass univariate approach
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What is the Design Matrix?
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ConstantRegressor
Observation 1

Modelling the condition:

Modelling the constant:
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The problem with our data
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The problem with our data

From our experiment we know that a 
stimulus looking like this:

will elicit a BOLD signal change like this:

WE NEED TO ADJUST OUR MODEL FOR THIS!
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HRF convolution

The fMRI signal at time t, x(t), is modelled as the 
convolution of a stimulus function v(t) and the 
haemodynamic response h(t), that is, 

x(t) = (v*h)(t)
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The problem with our data

• We have collected noisy data!
• The signal we are interested in is relatively weak
• The data has a complicated temporal and spatial noise structure
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The problem with our data

• Many types of noise in our data 
• E.g. HRF temporally smooth rather than discrete, head movement, 

physiological noise like heart beat/breathing, scanner physics, susceptibility 
artefacts/dropout, … 

• The noise is not identically distributed or independent, but may affect 
some frequencies more than others
• Much of this can be avoided by good quality acquisition, and by pre-

processing
• However, some of it may remain and has to be dealt with during 

analysis
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Dealing with noise

• Include nuisance regressors, e.g. for motion

• High-pass filter to filter out low frequencies 
• We assume that most of the lower frequencies in our signal are due to 

noise, e.g. signal drift, so okay to exclude them 
• SPM default: 128s
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Our model

• Our design matrix includes all available knowledge about experimentally controlled factors and 
potential confounds that may affect our data

22

Parameter estimation

• Assumptions about population 
error values ε:

• expected value of 0 at each time point
• constant variance σ2

• independent
• normally distributed

• Ordinary least squares estimation
• Parameter estimates that minimise the 

sum of squared errors

these are the squared errors 

for each observation
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• Introduction
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Inference

• After fitting the GLM we use the estimated parameters to determine 
whether there is significant activation present in the voxel.

• Inference is based on the fact that:

• Use t and F procedures to perform tests on effects of interest.
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Hypothesis Testing

• Null Hypothesis H0

Typically what we want to disprove (no effect).

ð The Alternative Hypothesis HA expresses outcome of interest.

To test a hypothesis, we construct “test statistics”.

• Test Statistic T
The test statistic summarises evidence about 
H0.
Typically, test statistic is small in magnitude 
when the hypothesis H0 is true and large 
when false. 
ð We need to know the distribution of T 
under the null hypothesis. Null Distribution of T
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Hypothesis Testing

• p-value:
A p-value summarises evidence against H0.
This is the chance of observing value more extreme 
than t under the null hypothesis.

Null Distribution of T

• Significance level α:
Acceptable false positive rate α.

ð threshold uα
Threshold uα controls the false positive rate 

t

p-value  

Null Distribution of T

a

ua

• Conclusion about the hypothesis:
We reject the null hypothesis in favour of the 
alternative hypothesis if t > uα

)|( 0HuTp aa >=

𝑝 𝑇 > 𝑡|𝐻!
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Contrasts

• It is often of interest to see whether a linear combination of the 
parameters are significant.

• The term cTβ specifies a linear combination of the estimated 
parameters, i.e.

• Here c is called a contrast vector.
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Example

• Event-related experiment with two types of stimuli.
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T-contrast

• One-dimensional and directional
• eg cT = [ 1  0  0  0 ... ] tests β1 > 0, against the null hypothesis H0: β1=0
• Equivalent to a one-tailed / unilateral t-test

• Function: 
• Assess the effect of one parameter (cT = [1 0 0 0]) 
OR
• Compare specific combinations of parameters 
(cT = [-1 1 0 0])
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T-test

• To test

• use the t-statistic:

• Under H0, T is approximately t(ν) with:

contrast of
estimated

parameters
T =

variance
estimate
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T-test summary

• T-test is a simple signal-to-noise ratio measures
• H0: CT β=0 vs H1: CT β>0 
• “One” linear hypothesis testing.
• We can’t test both β1=0 and β2=0 at a same time

• What if we have many interrelated experimental conditions, e.g. 
factorial design? 
• How can we test multiple linear hypothesis?

Y = X1 * β1 + X2 * β2 + β3 + ε 
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Multiple Contrasts

• We often want to make simultaneous tests of
several contrasts at once.

• Now c is a contrast matrix.
• Assume

• Then 

34

Example
• Consider a model with box-car shaped activation and

drift modeled using the discrete cosine basis.
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F-contrast

• Multi-dimensional and non-directional
• Tests whether at least one β is different from 0, against the null hypothesis H0: 

β1=β2=β3=0 
• Equivalent to an ANOVA

• Function: 
• Test multiple linear hypotheses, main effects, and interaction
• But does NOT tell you which parameter is driving the effect nor the direction 

of the difference (F-contrast of β1-β2 is the same thing as F-contrast of β2-β1)
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F-Test

• Test the hypothesis using F-statistic

• Assuming the errors are normally distributed, F has an approximate F-
distribution with (ν0, ν) degrees of freedom, where:
•
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F-test summary

• The F-test evaluates whether any combination of contrasts explains a 
significant amount of variability in the measured data
• H0: C β=0 vs H1: C β≠0 
• More flexible than T-test

• F-test can tell the existence of significant contrasts. It does not tell 
which contrast drives the significant effect or what is the direction of 
the effect.
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Statistical Images

• For each voxel a hypothesis test is performed. The
statistic corresponding to that test is used to create a 
statistical image over all voxels.
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SPM Practical

• Specify model: choose data files and set up design matrix
• Estimate parameters using the GLM (either in the ‘traditional’ way or with Bayseian

approaches) for every single voxel
• Test hypotheses using contrast vectors. This produces a Statistical 

Parametric Map (or Posterior Probability Map in Bayseian models) 

• Interpretation
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SPM Practical

Simple example: 

• 2 conditions: listening to auditory stimuli, rest 
• Blocks alternated between listening and rest
• Each acquisition consisted of 64 slices (3 x 3 x 3 mm3 voxels)
• Acquisition took 6s
• Scan repetition time (TR): 7s

(see SPM 12 M anual: Auditory fM RI data)
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SPECIFY 1st LEVEL

• After the pre-processing steps: 
Model specification

• Press SPECIFY 1ST LEVEL
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SPECIFY 1st LEVEL

• In the batch editor, highlight “Directory” 
and select the location in which you want 
to save your results 
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SPECIFY 1st LEVEL

• In the batch editor, highlight 
“Directory” and select the location in 
which you want to save your results 
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SPECIFY 1st LEVEL

• Open “Timing Parameters”
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SPECIFY 1st LEVEL

• Open “Timing Parameters”
• Highlight “Units for Design” and select “Scans” 

(rather than “Seconds”)
• Highlight “Interscan Interval” and enter your 

TR in seconds, e.g. 7
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SPECIFY 1st LEVEL

• Highlight “Data and Design” and select 
“New Subject/Session”

• Open the newly created 
“Subject/Session” option

• Highlight “Scans” and select the 
smoothed, normalised functional images, 
e.g. swfM00*_00*.img
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SPECIFY 1st LEVEL

• Highlight “Data and Design” and select 
“New Subject/Session”

• Open the newly created 
“Subject/Session” option

• Highlight “Scans” and select the 
smoothed, normalised functional images, 
e.g. swfM00*_00*.img
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SPECIFY 1st LEVEL

• Highlight “Condition” and select “New 
Condition

• Open the newly created “Condition” 
option
• Highlight “Name” and enter the condition’s 

name, e.g. “Listening”
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SPECIFY 1st LEVEL

• Highlight “Condition” and select “New 
Condition

• Open the newly created “Condition” 
option
• Highlight “Name” and enter the condition’s 

name, e.g. “Listening”
• Highlight “Onsets” and enter the onset times 

of your condition, e.g. “6:12:84”
• Highlight “Durations” and enter the duration 

of your condition in seconds, e.g. “6”

• Save the batch as specify.mat

• Press the RUN button
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SPECIFY 1st LEVEL

• SPM will write an SPM.mat file to your 
directory

• SPM will also plot the design matrix in the 
Graphics window

• You can use the REVIEW button to 
check your model specification
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ESTIMATE

• After model specification: 
parameter estimation

• Press the ESTIMATE button
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ESTIMATE

• Highlight the “Select SPM.mat” 
option and select the SPM.mat file 
you have saved earlier

• Save the batch as estimate.mat

• Press the RUN button

• SPM will create a number of files in 
the selected directory, including a 
new version of the SPM.mat file
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RESULTS

• After parameter estimation: 
hypothesis testing

• Press the RESULTS button
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RESULTS

• After parameter estimation: 
hypothesis testing

• Press the RESULTS button
• Select the SPM.mat file created by 

estimation
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RESULTS

• Select “Define new contrast”

Surfable design matrix

List of contrasts
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RESULTS

• Select “Define new contrast”
• Name your contrast, e.g. “Listening > 

Rest”

• Select type of contrast: “t-contrast” or 
“F-contrast”

• Use a numerical code to define your 
contrast, e.g. “[1 0]”

Select type of contrast

Code your contrast
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RESULTS

• Select “Define new contrast”
• Define a complementary contrast, e.g. 

“Rest > Listening”, and use the 
complementary code, e.g. “[-1 0]”
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RESULTS

• To view a contrast, select the name of 
the desired contrast, e.g. “Listening > 
Rest”

• Press “Done”
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RESULTS

• Do you want to mask your results with 
a particular contrast?
• By masking your results, you are only 

selecting those voxels which have been 
specified by the masking contrast (not 
applicable in our example)

• In this case, select “none”
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RESULTS

• How do you want to set your statistical 
thresholds?

• Select “FWE”
• A family-wise error is a false positive 

anywhere in our SPM. This thresholding 
option uses “FWE-corrected” p-values
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RESULTS

• How do you want to set your statistical 
thresholds?

• Select “FWE”
• A family-wise error is a false positive 

anywhere in our SPM. This thresholding 
option uses “FWE-corrected” p-values

• Select the default value of “0.05”
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RESULTS

• What do you want your cluster extent 
threshold k to be?

• Accept the default value, “0”
• This will produce SPMs with clusters 

containing at least k (in our case, 0) voxels
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RESULTS

• SPM will show those voxels which 
reach our threshold in the “Listening > 
Rest” contrast in the Graphics window
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RESULTS

• SPM will also display a statistical table 
for our results
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RESULTS

• In SPM’s interactive window we can 
produce different statistical tables and 
visualisations of our data

Visualisations

Statistical tables
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RESULTS

• You can experiment with overlays to 
display your data
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Take-home message

The contrasts we can choose and the interpretation of 
results depend on our model specification, which in 

turn depends on our experimental design!
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