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* Methodological Issues & Computational Platform
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Graph Theoretical Analysis

The Seven Bridges of Kénigsberg is a historically notable
problem in mathematics. Its negative resolution by Leonhard
Euler in 1736 laid the foundations of graph theory and
prefigured the idea of topology.

Graph Theoretical Analysis

Graph theoretical analysis

Bullmore and Sporns, 2009 4

Graph Theoretical Analysis

Graph definition
A graph is composed of a finite non-empty set of
vertices and a set of edges between vertices,
usually expressed as:

G=(V, E)

G represents a graph, V is the set of
vertices in graph G, and E is the set of
edges between vertices in graph G.

O—®
N V(G) =5, E(G) =8
G g .




Graph Theoretical Analysis
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Graph Theoretical Analysis
Type of Graph

(a)

a: undirected b: directed c: weighted
[2].S. Boccaletti et al. Physics Reports 424 (2006) 175 -308

Social network

Friendship network Citation network
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B|O|Og|ca| ﬂetWO rk Protein interaction network
Ecological network

Brain network




Computational Methodology

Brain Network: Principles

Graph theoretical analysis

Tract-tracing Functional MRI Diffusion MRI
o ;ﬁ 3&55/7 Regular Small-world

- . .
Node: brain region
Link: connection

Hilgetag et al., 2000. Achard et al., 2006. Hagmann et al., 2007.
Trans R Soc Lond B Biol Sci J Neurosci PLoS ONE
MEG EEG Structural MRI [ r—— £

Watts and Strogatz, 1998. Nature

Regular: Small-world: Random: Small-wurld'nelworks contain
high Gy high Cp low Cp many l.ucal lmlfs and a few
high Lp low Lp low Lp Ll(ong-dnstagce links (so-called

Bassett et al., 2006. Stam et al., 2007. He et al., 2007. shortcuts™).
PNAS Cereb Cortex Cereb Cortex

Cp: average clustering of a network
13 Lp: average shortest path length of a network 14

13 14
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Computational Methodology

Description of the network structure - Brain hubs

A

* Geometric quantities and their distribution

Degree
number of friends
Clustermg coeff|c|ent . - ‘Parl\c\uan\/-‘\Scan2 participant B participant C participant D participant E

Friends of friends are friends ’ participant A-E

Shortest path
. The path with the least number of edges between two
vertices

Betweenness
The number of shortest paths that go through me

e s

Hagmann et al., 2008. PLoS Biol 16
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* Brain hubs
A B
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Medial view

Top view

Yan et
al., 2011.
PLoS
ONE

He et al., 2009. PLoS ONE 17
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Community Structures

Computational Methodology

The connections within the community are tight, and
the connections between the communities are relatively
sparse

Yan et
al., 2011.

Includes colleagu
friends, schoolmates,
family members
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Computational Methodology Computational Methodology
Assortativity

« If the vertices with high degree value in the network tend to * Correlation
be interconnected with the vertices of other height values,
the network is said to have the same direction matching
property; (social network)

« If the vertices with high degree value in the network tend to
be interconnected with vertices with low degree value, the
network is said to have reverse matching properties;
(biological network)

Cm—

Li, et al., 2021. Hum Brain Mapp

Zhang and Raichle, 2010. Nat Rev Neurol
21 22
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* Functional network connectivity
* Independent Component Analysis Actosaun

Patients
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‘weighted directed networks.
structural datasels: tract tracing weighted undirected networks
MR, structural MRI
functional datasets: functional MRI, MEG, EEG.

from functional data

723456789

binary directed networks weighted undirected networks

e
Symmetrize o

binary undirected networks

Rubinov and Sporns, 2010.

Neurolmage
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modules hub nodes
modular structure betweenness centrality
modularity other centralities

shortest path triangle motif degree
characteristic path length clustering coefficient anatomical motifs degree centrality
global efficiency transitivity functional motifs participation coefficient

closeness centrality degree distribution

Rubinov and Sporns, 2010. Neurolmage 29
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Neurolmage 52 (2010) 1059-1069

Contents lists available at ScienceDirect
Neurolmage

journal homepage: www.elsevier.com/locate/ynimg

© Mental Health Research Di

Mikail Rubinov <, Olaf Sporns 4*

* Black Dog Institute and School of Pychiatry, University of New South Wales, Sydey, Australia
ivision, Queensland Institute of Medical Research, Brisbare, Australia

© GSIRO Information and Communication Technologies Cenre, Sydney, Australia

* Department of Psychological and Brain Sciences, Iniana University, Bloomington, IN 47405, USA

Rubinov and Sporns, 2010. Neurolmage

Complex network measures of brain connectivity: Uses and interpretations
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A Anatomical connectivity (binary directed network) B Functional
(weighted undirected network)
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Mathematical definitions of ct

twork (see supplementary information f

version of this table)

Measure

Binary and undirected definitions

Weighted and directed defnitions

Basic concepts
fation

Degree: number of finks
connected to a node

Shortest path length:
a basis for measuring
integration

Number of triangles: a
basis for measuring.
segregation

Measures of integration
Characteristc path
length.

Basic concepts and measures

Nis the set of ll nodes in the network, and s the number of nodes.
Lis the set of alllnks in the network, and | is number of links.

(1.1)is a link between nodes i and f (. = N).

ay I the connection status between f and j:a, = 1 when link (i.§)

g ay (10 avoid
ambiguity with directed links we count each undicected link twice,
250y and a5 )

Degree of a node i,

> 4%
=

Shortest path length (distance), between nodes i and j,

where g, is the shortest path (geodesic) between i and j. Note
that d; = = for al disconnected pairs .

Number of triangles around a node i,

z(:%%:

TS

Characteristic path length of the network
(e:8. Watts and Strogatz, 1998).

S1=1 S Dt
2h=n et

where I, s the average distance between node i and all other nades,

1

L

=0 otherwise (g = 0 for all ).

Links i) are associated with connection weights ;.
Henceforth, we assume that weights are normalized,
such that 0'< wy < 1 forall i andJ.

i the sum of al weights in the network, computed
a1 = e Wy,

Directed links (i) are ordered from i to . Consequently,

in directed netwrks a; does not necessarily equal .

‘Weighted degree of i, k' =
(Directed) out-degree of , K"
(Directed) in-degee of i, kf"

Shortest weighted path length between i and j,

Y = 3o g™ 4f{Wi). wherefis a map (e, an inverse)
from weight to length and g, i the shortest weighted

path between and’.

Shortest directed path length from i to j, dj

Tt
where g s th directed shortes path from i 0.
{Weighted) geometric mean o‘f/glanglcs around i,

8= 35 (WyWin Wi,

Number of directe triangles around i

= 3 Snn (@ + a5) (@ + an) (@ + ay)

Weighted characteristic path lengin, LY = 157, S0

Directed characterstic path length, L = 1570y, S48

30

(weighted directed network)
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fremtiers in
HUMAN NEUROSCIENCE

ORIGINAL RESEARCH ARTICLE
publishad: 26 Decorber 2013
ol 10.3389/1nhum.2013.00910

Addressing head motion dependencies for small-world
topologies in functional connectomics

Chao-Gan Yan'23*, R. Cameron Craddock?, Yong He*® and Michael P Milham?*

* Nathan Kiine Institute for Psychiatic Research, Orangeburg, NY, USA
2 Contor for the Doveloping Brain, Child Mind Instituto, Now York, NY, USA
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“ State Key Laborstory of Cognitive Neuroscience and Learing & IDG/McGovern institute for Brain Ressarch, Bejjng Nommal University, Beijing, China
* Center for Collaboration and Innovation in Brain and Leaming Sciences, Beiling Normal University, Baiiing, China

Yan et al., 2013. Front Hum Neurosci. 31

Yanetal,2013. ooty

Front Hum Neurosci.

C o Table 1 | Topological properties of brain graphs examined in the

peilics gy

Topological properties  Descriptions

GLOBAL TOPOLOGICAL PROPERTIES

Local efficiency The average efficiency of information
transfer over a node's direct neighbors

Global efficiency The efficiency of information transfer

through the entire graph

Clustering coefficient The average interconnectedness of a

node’s direct neighbors

Characteristic shortest The average shortest path length between
path length any pairs of nodes

Normalized clustering The clustering coefficient compared to
coefficient matched random networks

Normalized characteristic  The characteristic shortest path length
shortest path length compared to matched random networks
Smallworldness The normalized clustering coefficient
divided by the normalized characteristic
shortest path length, which reflect the
balance of global efficiency and local
efficiency

The tendency of nodes to link with those
nodes with similar number of edges

Modularity The extent to which a graph can be
segregated into densely intraconnected but
pase mode:

31

Computational Methodology

REGIONAL TOPOLOGICAL PROPERTIES
The number (or sum of weights) of
connections connected directly to a node

Degree centrality

Nodal efficiency The efficiency of information transfer over a

node’s direct neighbors

Nodal clustering The interconnectedness of a node's direct
coefficient neighbors

Subgraph centrality The participation of a node in all subgraphs
comprised in a graph

The influences of a node over information
flow between other nodes

Betweenness centrality

Eigenvector centrality A self-referential measure of centrality ~

nodes have high eigenvector centrality if
they connect to other nodes that have high
sigenvector centrality

Yan et al., 2013.
Front Hum Neurosci.
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Resting-State fMRI: Principles

Data Analysis: Computational Algorithms
Data Analysis: Methodological Issues
Data Analysis: Computational Platform

Applications to Brain Disorders
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Methodological Issues

Neurolmage 211 (2020) 116604

Contents lists available at ScienceDirect

Neurolmage

Neurolmage

journal homepage: www.elsevier.com/locate/neuroimage =

Optimising network modelling methods for fMRI )

Usama Pervaiz ™", Diego Vidaurre ™, Mark W. Woolrich”, Stephen M. Smith *

= Oxford Cente for Functional MRI o the Brain (FMRIS), Ne freld of Clnical Unversiy of
Oxford, Oxord, OX3 9DU, Unied Kingdom

© Oxford Centre for Human Brin Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, Universiy of Oxford, Oxford, OX3 7%,
United Kingdom

< epartment of Clncal Medicing, Aarhus Univrsy, Denark
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P output
Resting state fMRI AAge,
L gle}
g etc
ST

Defining Brain Parcels

STEP6
Classifier/Predictor to

STEP 4 (Optional) Predict behaviour

Shrinkage/Regularization

STEP 3 (Optional)
Project to Tangent
space

N—

Fig. 1. Flow chart summarizing the six major steps of the methodology
framework for rfMRI analysis.
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Methodological Issues

A # © Normazad custering coeficint plsed
] T o
d R
= 9 i
1.4 Winou GR win GsR
241 %
1, Mg,
R N L L TP TTIIT Z‘
i
o or oz o3 oe os o or oz os os os
Densty trsshala Densty trsarala
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Methodological Issues

[FIGURE 2 | Small-world properties (A) and hub distributions (B) under

different head motion correction strategies. Five preprocessing strategies

were evaluated in combination without GSR (green shaded) and with GSR For the abbrevitions of the
(pink shaded). “«t” in panel (A) indicates that the hub distrioution reated with BrainNet Viewer (Xia

[domonstrated in panel (B) is derived from Friston 24 model et al., 2013 wwwnitrc.org/projects/bnvi).

Yan et al., 2013. Front Hum Neurosci. 41
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Methodological Issues

B Functional connectivity
(weighted undirected network)

Thresholding
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Methodological Issues
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FIGURE 3 | Impact of density on hub distribution. (A) Hub distribution distribution between with and without GSR becomes dominant. (B) Scatter
across various densities either without GSR (green shaded) or with GSR (pink  plot of Fisher's Z averaged across participants. Most of the top connections
shaded) derived from the data corrected with Friston 24 model. With can be identified either with or without GSR. However, when the percentage

A

‘stringent density thresholds, the hub distributions are similar between data increases, a large portion of connections can be only identified by one
with and without GSR, When the density inoreases, the discrepancy of hub  procedure but not the other.
Yan et al., 2013. Front Hum Neurosci. 40
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* Resting-State fMRI: Principles

« Data Analysis: Computational Algorithms

« Data Analysis: Methodological Issues
» « Data Analysis: Computational Platform

« Applications to Brain Disorders
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Traditional fMRI Preprocessing Toolbox

* Numerous steps and
configurations

« High learning curve

« Big data era of
neuroimaging calls for
new pipelines

FreeSurfer
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Peer Evaluation

Cited by 1532 times, ESI Top 1% top cited paper and hot paper

9
P - 4
E2RCH
Qo
()
=9 A
RESEARCH ARTICLE WILEY : ;.
Estimation of vocational aptitudes using functional brain ! e
networks 1 / N
Yul-Wan Sung® | Yousuke Kawachi® | Uk-Su Choi? Dachun Kang® (==

Chibiro Abe? | Yuki Otomo? | Seif Ogawa®

pants, we used the data processing assistant for  part of resting-state
fMRI preprocessing software known as DPABI (Chao-Gan & Yu-Feng,
2010; Yan et al,, 2016). The preprocessing included slice-scan time cor

Seiji Ogawa
Inventor of fMRI BOLD 45
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®00 DPARSFA.
Data Processing Assistant for Resting-State fMRI
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Computational sharing platform for fMRI

» Incorporating DPARSF

Prior work, cited 2704 times

» Adapting methodological updates
Head motion (cited 1159 times)
Standardization (cited 340 times)

Multiple comparison correction (cited
176 times)

» Standardized preprocessing pipeline
> Statistical toolbox

» Platform for data sharing

Yan et al., 2016. Neuroinformatics

Corresponding author
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DPARSF

Data Organization

ProcessingDemoData.zip

FunRaw

Sub_001
Sub_002
Sub_003

T1Raw
Sub_001
Sub_002
Sub_003

Functional DICOM data

Structural DICOM data
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Yan et al., 2016. Neuroinformatics

ESI Top 0.1% Highly Cited Paper
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o DPABI

DPARSF 4.5

DPABISU 1.0Beta

Temporsl Dynamic Analysis

Quaity Control

Standardization

Statistical Analysis

Viewer

Utities:

The R-fMRI Maps Project

opabs

DPABISurf

[ ] DPARSF

DPARSF

DPARSF Advanced Edition

DPARSF Basic Edition

DPARSF for Monkey Data

DPARSF for Rat Data

Preprocessing for Task {MRI Data
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DPABISurf

[ ] DPABISurf
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Standardzation
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Viewer
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Yan et al., 2021. Science Bulletin
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DPABINet

° OPABINet
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DPABINet Network Construction
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Statistcal Analysis
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DPABINet
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Future Directions

* R-fMRI methodology

* Mechanism of R-fMRI: electrophysiology/fMRI
recording

* Modulation and intervention: medication and
brain stimulation

* Application to brain disorders

57

57

DPABI/DPABISurf/DPARSF§HIE

# 7L /ADPABI/DPABISutf/DPARSF
RYBEBRINE (%) &%
2021.3.27~3.29

P, % — EDPABISurf/DPABINet
) RS RRRIE (LTAY) Ek
o 2021.4.24~4.26

EHAZEJp, 1EKEhttp://rfmri.org

59

59

DPABINet
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The R-fMRI Course V3.0 [l

Chao-Gan YAN, Ph.D. -—
TR

Hipirimd.org http://rfmri.org/wiki
e
International Big-Data Center for Depression Re:
Institute of Psychology, Chinese Academy of Sci

search

iences

g (15t The R-fMRI Journal Club
L~ Official Account: REMRILab
o

http://rfimri.org/Course
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DPABISurfZ B&iETaLL IV 53

© opaBISUrBIERME

RESHEALERLS

DPABISurf V1.4
I3

DPABISurf

HINEZER: 995T/4x
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The R-fMRI Lab

WeChat Official Account: RFMRILab
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Thanks for your attention!
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