

Computational MethodologyGraph theoretical analysisNumber of the second analysisSecond analysisNumber of the second analysisNumber of the second analysisNumber of the second analysisNumber of the second analysisSecond analysisSecond analysisNumber of the second analysisSecond analysis

Computational Methodology

Community Structures

The connections within the community are tight, and the connections between the communities are relatively sparse

19

20

Computational Methodology

Assortativity

If the vertices with high degree value in the network tend to be interconnected with the vertices of other height values, the network is said to have the same direction matching property; (social network)
If the vertices with high degree value in the network tend to be interconnected with vertices with low degree value, the network is said to have reverse matching properties;

21

23

	0 (- (¹ M	- 4			
able A1 Aathematical definitions of complex network measures (see supplementary information for a self-contained version of this table).					
Measure	Binary and undirected definitions	Weighted and directed definitions			
Basic concepts and measur Basic concepts and notation	rest N is the set of all nodes in the network, and n is the number of nodes. L is the set of all links in the network, and is number of links. (L) is a link intervention nodel and L(1), L(1) and N(1) the number of links (L(1)) exists (when 1 and 1 are neighbory); $n_0 = 0$ otherwise $(n_0 = 0$ for all 1). We compute the number of links at $l = 2n_{\rm cov} a_0(n_0 \mbox{ areas})$	Links (i, f) are associated with connection weights w_{μ} . Henceforth, we assume that weights are normalized, such that of $S_{\mu\nu} \in S(0, all and)$. As the second second second second second second at $I^{\mu\nu} = \sum_{\mu \neq \mu} w_{\mu}$. Directed links (1, j) are ordered from it is j. Consequently, in directed networks a_{μ} does not necessarily equal a_{μ} .			
Degree: number of links connected to a node	Degree of a node i. $k_i = \sum_{j \in N} a_{ij}.$	Weighted degree of i, $k_i^{\mu} = \sum_{j \in i} m_{\mu_j}$. (Directed) out-degree of i, $k_i^{\mu} = \sum_{j \in i} m_{\mu_j}$. (Directed) in-degree of i, $k_i^{\mu} = \sum_{j \in i} m_{\mu_j}$.			
Shortest path length: a basis for measuring integration	Shortest path length (distance), between nodes i and $j,$ $d_{ij} = \sum_{a_{kl}v = g_{k-j}} a_{uv},$	Shortest weighted path length between i and j, $d_{ij}^{ai} = \sum_{n_{i} \in \mathcal{D}_{ij}^{ai}} f(\mathbf{w}_{ijn})$, where j is a map (e.g., an inverse) from weight to length and g_{i}^{ai} , js the shortest weighted path between i and j.			
	where $g_{i \rightarrow j}$ is the shortest path (geodesic) between i and $j.$ Note that $d_{ij}=$ = for all disconnected pairs $i,j.$	Shortest directed path length from <i>i</i> to j , $d_{ij}^{-} = \sum_{ij \in g_{i-j}} a_{ij}$, where $g_{i\rightarrow j}$ is the directed shortest path from <i>i</i> to <i>j</i> .			
Number of triangles: a basis for measuring segregation	Number of triangles around a node i, $t_i = \frac{1}{2} \sum_{f,h=N} a_{ij} a_{ih} a_{jh}.$	$\begin{array}{l} (Weighted) \mbox{ geometric mean of triangles around } i, \\ t_i^{tr} = \frac{1}{2} \sum_{j,h\in \mathcal{H}} (w_i y_h w_h^{jh})^{1/j}, \\ number of directer triangles around i, \\ t_i^{-1} = \frac{1}{2} \sum_{j,h\in \mathcal{H}} (a_{ij} + a_{jk}) (a_{ih} + a_{ki}) (a_{jh} + a_{kj}). \end{array}$			
Measures of integration Characteristic path length	Characteristic path length of the network (e.g., Watts and Stropstr. 1998). $L = \frac{1}{n} \sum_{i \in \mathcal{N}} L_i = \frac{1}{n} \sum_{i \in \mathcal{N}} \sum_{\substack{i \in \mathcal{N}, p:i \\ n \neq 1}} \frac{1}{n-1},$	Weighted characteristic path length, $L^{w} = \frac{1}{n} \sum_{i \in W} \frac{\sum_{k \in M_{i}} d_{i}^{w}}{n-1}$. Directed characteristic path length, $L^{-} = \frac{1}{n} \sum_{k \in W} \frac{\sum_{i \in M_{i}} d_{i}^{w}}{n-1}$.			
	where l_i is the average distance between node i and all other nodes.				

Computational M	ethodology
fromtiers in HUMAN NEUROSCIENCE Addressing head motion depende	ORIGINAL RESEARCH ARTICLE Database 20 Goodman 2010 Con Essential Strong Con- con Essential Strong Con- concies for small-world
topologies in functional connecto Chao-Gan Yan ^{1,2,3,4} , R. Cameron Craddock ^{1,3} , Yong He ^{4,4} and R ¹ Natura Kine Institute for Paychaire Research, Cangadarag, NY, USA ² Camer for Developing Brain, Child Med Institute, New York, NY, USA ² Camer for Longitude Control (Control (Con	Michael P. Milham ¹² * Michael Study Center New York NY USA creating Research, Beijing Normal University, Beijing, China wensity, Beijing, China
Yan et al., 2013. Front Hum Neurosci.	3

Co	current study.		gy
	Topological properties	Descriptions	
	GLOBAL TOPOLOGICAL F		
	Local efficiency	The average efficiency of information transfer over a node's direct neighbors	
	Global efficiency	The efficiency of information transfer through the entire graph	
	Clustering coefficient	The average inter-connectedness of a node's direct neighbors	
	Characteristic shortest path length	The average shortest path length between any pairs of nodes	
	Normalized clustering coefficient	The clustering coefficient compared to matched random networks	
	Normalized characteristic shortest path length	The characteristic shortest path length compared to matched random networks	
	Small-worldness	The normalized clustering coefficient divided by the normalized characteristic shortest path length, which reflect the balance of global efficiency and local efficiency	
Yan et al., 2013.	Assortativity	The tendency of nodes to link with those nodes with similar number of edges	
rioni riuni Neurosci.	Modularity	The extent to which a graph can be segregated into densely intraconnected but snarsely interconnected modules	32

 Example contrasting
 The number for sum of weights of contrast or contrasting

 Total efficiency
 The number for sum of weights of contrast or contrenot or contrenot or contrast or contrast or contrast o

DPARSF

ProcessingDemoData.zip

FunRaw

Sub_001

Sub_002

Sub_003

Sub_001

Sub_002

Sub_003

T1Raw

Data Organization

Functional DICOM data

Structural DICOM data

46

44

45

-

Future Directions

Mechanism of R-fMRI: electrophysiology/fMRI

• Modulation and intervention: medication and

DPABI/DPABISurf/DPARSF特训营

第九届DPABI/DPABISurf/DPARSF 脑影像基础特训营(云端)通知

2021.3.27~3.29

第一届DPABISurf/DPABINet 脑网络进阶特训营(北京现场)通知 2021.4.24~4.26

定期举办,请关注http://rfmri.org

• R-fMRI methodology

recording

brain stimulation

• Application to brain disorders

55

<figure>

56

58

52

59

